Термин «почвенный покров» отсутствует даже в книге «Толковый словарь по почвоведению» (1975).
Многие исследователи считают, что почвенный покров — это совокупность однородных по форме почвенных тел (или ареалов), расположенных по строгим правилам и образующих единую целостную систему. Если учесть, что верхние 10—20 м толщ склонов, как правило, состоят из чередующихся разновозрастных слоев почв и наносов, то можно говорить о почвенно-геологических телах и характере их пространственного размещения. Однако определение должно включать количественную оценку. Ее поиск предполагает выделение элементарных почвенных форм — букв, а затем их сочетаний — слов. После этого переходят к составлению почвенной карты — предложений, текста, структура которой впоследствии может быть описана математически.
Путь нахождения количественного критерия целостности структур почвенного покрова можно определить кратко словами: точка — линия — площадь — объем. Иначе — это движение научной мысли от простых нульмерных почвенных форм к более сложным — одномерным, от них к еще более сложным — двумерным и трехмерным, а от последних — к n-мерным. Но здесь наши рассуждения могут быть прерваны словами: «Куда же вы заведете по такому пути нашу науку?». Так, академик С. В. Калесник (1970) писал, что если географическое пространство многомерно, то, «значит, оно может быть и более трех измерений и выйти за пределы обычного евклидова пространства? И если да, то зачем?».
Конечно, такое предостережение настораживает. Однако вспомним недавний спор о роли математики в биологии. Тогда некоторые видные ученые резко выступали против формализации науки, так как главным в исследовании считали опыт и думали, что такой сложный объект, как живой организм, не может быть охарактеризован математически.
В период формирования почвенной науки В. В. Докучаев писал «Современное почвоведение далеко от совершенства» (1953, т. 4). Его слова можно отнести и к нынешней стадии развития, так как не выполнен важнейший этап исследования — математизация знаний. Леонардо да Винчи в XV в. в «Книге о живописи…» (1934, с. 60) писал: «Никакое человеческое исследование не может быть названо истинной наукой, если оно не проходит через математические доказательства… Наукой называют такое разумное рассуждение, которое ведет начало от своих первых оснований… Первым основанием науки…является точка; вторым — линия; третьим — поверхность; четвертым — тело». Представим эти основания в виде пространственных почвенных моделей: точки — нульмерной, линии — одномерной, плоскости — двумерной, объема — трехмерной.