М. М. Филатов (1945) создал рисунок, С. А. Захаров построил первое в мире геометрическое пространство части континента, Я. Н. Афанасьев — всей Земли.
Надо было двигаться дальше, охватывая формализованными представлениями другие элементы почвенного покрова. Именно этому и посвящена данная глава. В ней обосновываются пути развития почвенных моделей, как одномерных профильных, так и площадных, на основе теории симметрии и идей общей теории систем. Последняя разработана Ю. А. Урманцевым (1974, 1978) и успешно применена к природным объектам В. Ю. Забродиным (1981), С., И. Сухоносом (1983), а теория симметрии широко используется в работах Н. П. Депенчук (1963), И. И. Шафрановского (1968), Э. М. Сороко (1984).
Рассмотрим модель, которая раскрывает структуру почвенных профилей от пустынных холодных берегов Арктики (Карское море) до жарких пустынь Каракумов в Туркменистане. Модель имеет естественные границы, оконтуривающие Туранскую, Казахстанскую и Западно-Сибирскую геосистемы, а также четко выраженные почвенные структуры склонов северной и южной экспозиций.
Главный строительный элемент модели — отрезок прямой линии, который характеризует по вертикали толщину горизонтов А, В и С, образующих почвенный профиль, а по горизонтали — ширину почвенных поясов. Данные по мощностям горизонтов брались лишь для нормально развитых почв повышений. Выбор мощностей основывался на большом фактическом материале: красочных зарисовках профилей почв Я. Н. Афанасьева (1930), Н. А. Качинского (1965), в определителе «Почвы СССР» (1979), цветных фотографиях из книг советских и зарубежных авторов. Огромную ценность представляли почвенные монолиты музеев страны. Для контроля автор использовал экспедиционные материалы, которые обнаруживали соответствие свойств реальных почв модельным.
В. В. Докучаев особое внимание уделял выявлению характера пространственного распределения почвенных горизонтов; им сделаны тысячи замеров, многие из которых он опубликовал в виде сводных таблиц. Выделив по окраске почвенные горизонты и установив таким образом качественные отношения, Докучаев пытался обнаружить и численные соотношения между ними. Поражает его способность гармонично мыслить: он умело сочетал связи между мыслью и числом, между качеством и количеством.
Измерения, число и образ — важнейшие ступени познания от качества к количеству. Напомним, что количественные отношения обнаружить проще и легче, чем качественные, Поэтому «найти за этими более простыми и доступными наблюдению отношениями скрытую качественную сторону изучаемых явлений — это одна из задач деятельности мышления» (Кедров, 1983). С помощью пропорций в науке сделано много открытий: большинство известных нам законов физики и химии обосновываются простыми соотношениями чисел. Любая система, базирующаяся на наблюдаемых числах, будет «заслуживать предпочтение перед другими системами, не имеющими численных опор» (Менделеев, 1877).
Модель автора книги разработана в двух вариантах. В первом устанавливаются пространственные структурные связи между горизонтами А в системе поясности, а во втором — между горизонтами А, В и С в профилях различных почв. Рассмотрим первый вариант модели, следуя схеме академика Б. М. Кедрова (1983).
Познание конкретных свойств почв начинается в поле, где в выкопанных разрезах констатируются фактические мощности горизонтов А. Все реальное затем переводится в численные соотношения. Делается это поэтапно следующим образом. Полевые наблюдения показали, что фактические мощности горизонтов А равны 5 см в пустынном светлоземе, 8 см в серо-бурой почве, 13 см в бурой полупустынной, 21 см в светло-каштановой, 34 см в темно-каштановой почвах, 55 см в черноземе обыкновенном, 89 см в черноземе выщелоченном (мощном). От последнего через серые лесные и подзолистые почвы к тундровым ряд мощностей горизонта А уменьшается в последовательности: 55, 34, 21, 13, 8, 5 см.
Таким образом, в полевых условиях получены реальные мощности горизонта А основных почв — эмпирические числа, которые в отдельности не раскрывают никаких секретов природы.
Следующий этап познания — связывание этих отдельных, казалось бы, случайных чисел в ряд — позволяет обнаружить определенную закономерность. Она выражается в последовательном возрастании мощностей горизонтов А с юга на север, от песчаных светлоземов к лугово-степным мощным черноземам, достигая максимума (89 см) в черноземах, а затем к северу снова уменьшаясь до 5 см в тундровых почвах. Таким образом, получается ряд: 5, 8, 13, 21, 34, 55, 89, 55, 34, 21, 13, 8, 5 см.
На очередном этапе исследования ставится задача — обнаружить в этом ряду эмпирический закон, который выступил бы как обобщение всего данного ряда чисел. Деление каждого последующего числа на предыдущее, т. е. поиск отношений между мощностями горизонта, дает постоянную величину, равную 1,618… Следовательно, в данном ряду, характеризующем изменение мощностей горизонта А в системе широтной поясности, мы видим замечательную возвратную последовательность чисел Фибоначчи.
Числа Фибоначчи — элементы числовой возвратной последовательности 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …, в которых каждый последующий член равен сумме двух предыдущих (Воробьев, 1984; Маркушевич, 1983).
В этом ряду мощность любого почвенного горизонта равна сумме двух предыдущих мощностей, например 21 см каштановой почвы есть сумма двух предыдущих чисел, 8 и 13 см (бурой и серо-бурой почв). Все это свидетельствует о том, что приращение мощностей почвенного горизонта
А, как и других (В, С), в системе поясности подчиняется закону симметрии подобия.
Таким образом, правильность увеличения (и уменьшения) мощностей почвенных горизонтов, наблюдаемая в модели, приводит к мысли о том, что за этой упорядоченностью чисел скрывается фундаментальная закономерность почвообразования, количественно обосновывающая установленный В. В. Докучаевым закон горизонтальной почвенной поясности. Теперь покажем, что подобная же закономерность выявляется и в соотношении отдельно взятых горизонтов А, В и С по вертикали.
Вооружившись платоновским изречением: «Геометрия приближает нас к истине», выпишем числовые характеристики модели. У чернозема обнаруживаются следующие отметки нижних границ горизонтов от поверхности склона вниз к горной породе: 89, 157, 210 см, а также мощности горизонтов: для А 68 см (157—89 = 68), для В 53 см (210—157 = 53). Наиболее значительным является горизонт А чернозема в центре модели: его мощность равна 89 см. Если это значение разделить на величину мощности лежащего под ним горизонта В, а эту последнюю на мощность горизонта С, то получим: 89:68 = 1,3 и 68:53 = 1,3.
Проведение подобных операций с другими почвами (каштановыми, бурыми, подзолистыми, тундровыми, пустынными) показало, что в модели отношение величины мощности одного горизонта к другому, соседнему, всегда равно 1,3.
Величина 1,3, так называемое «Вурфово число», является фундаментальной и тесно связана с золотым сечением 1,618… (Петухов, 1981).
«Вурфово число», так же как и «золотое сечение», отражает определенные отношения тел и явлений, связанные с особыми видами преобразований симметрии.
Обнаружение этих величин свидетельствует о высокой упорядоченности структур почвенного покрова, которая описывается симметрией подобия, или, иначе, масштабной симметрией. Постоянство этих соотношений позволяет, например, структуру профиля серо-бурой почвы считать эквивалентом структуры подзолистой глеевой почвы, а светло-каштановой — подзолистой дерновой. Действительно, в серо-бурой почве горизонты сменяются по глубинам 8, 14, 18 см, так же как и в подзолистой глеевой почве. И такое соответствие можно обнаружить в любой паре почв, которая зеркально отражается от плоскости р—р’, проходящей через центр модели (черноземы мощные). Поставив зеркальце ребром по линии р—р", можно убедиться в этом.
Некоторые читатели подумают: «Да это же игра в фиктивные цифирьки! Мистика! Что же получается: цифры управляют миром?» На это можно ответить словами великого Гете: «Числа не управляют миром, но показывают, как управляется мир». И доказать это могут только абстракции, модели. Вспомним их предназначение с помощью простых идеализированных (!) построений найти такое соотношение чисел, которое позволило бы проникнуть в качество изучаемого объекта.
Установление постоянных величин (1,6; 1,3) свидетельствует о том, что почвенные профили Земли упорядочены по законам симметрии. И в пространстве они располагаются симметрично. Иначе не может быть. Природа создает свои объекты энергетически целесообразными, компактными, правильными. Разве почва — случайное на Земле тело? Конечно же, почва воздикла не по воле случая; она — составная часть биосферы и подчиняется всем правилам ее возникновения и эволюции. А раз это так, то не следует удивляться и тому, что все почвенные структуры на Земле упорядоченные и могут быть выражены строгими рядами чисел (Соркин, 1982).
Казалось бы, далекие по свойствам пары почв: серобурые — подзолистые глеевые, светло-каштановые — подзолистые дерновые и другие — вдруг оказываются сходными по геометрической структуре профилей. Это сходство вскрывает тождество вещественного состава указанных пар профилей. Видимо, модель можно рассматривать как триадную, имеющую две стороны — левую, правую и середину, или правое кислотное плечо, левое щелочное плечо и нейтральную область в центре. Попробуем проникнуть в суть понятий «левизна» и «правизна», на существование которых в геометрии земного пространства указывал В. И. Вернадский.
Для понимания природы «левизны» и «правизны» почвенного пространства прибегнем к аналогии, сравнив горизонтальную почвенную поясность с клавиатурой фортепьяно. Ведь ноты в каждой октаве одинаковы, но отличаются высотой звука. В этом сравнении еще не все понятно. Многие при построении абстрактных схем привыкли понимать почвенный покров как континуум. Но эта континуальность, очевидно, образована дискретностью, как звукоряд: он един, непрерывен, но построен из самостоятельных звуков.
Вспомним аналогии Высоцкого, Захарова, Афанасьева, касающиеся свойств почв севера и юга России. Они наводят на мысль о сходстве природы горизонтальной и вертикальной поясности с музыкальными октавами. Предшественник Д. И. Менделеева английский химик Джон Ньюлендс в 1865 г., изучая периодическую повторяемость свойств элементов, подметил, что каждый восьмой элемент в его схеме напоминает по свойствам исходный элемент, с которого начинается счет. Это позволило прибегнуть к музыкальной аналогии и назвать установленную периодичность свойств элементов законом октав. И хотя Ньюлендс ошибся в расчетах, его аналогия сыграла огромную роль в науке.
Почвы в ряду горизонтальной зональности располагаются подобно нотам в музыкальной гамме. Здесь каждая «нота звукоряда» повторяется через семь других основных «звуков». Эту зависимость можно назвать «законом почвенных октав». Она означает, что у почв, расположенных в ряду по величине увеличения (или уменьшения) мощностей горизонтов, обнаруживается периодическое повторение некоторых фундаментальных свойств, например геометрических, через каждые семь элементарных почвенных поясов.
Структура почвенного покрова настолько гармонична, что ее можно «сыграть» на инструменте. Для этого изолированные, не связанные между собой профили и горизонты (стаккато) надо представить как мотивы, затем сгруппировать их в повторяющиеся или противопоставляющиеся группы (многоголосие) и лишь после этого с помощью операций симметрии эти группы привести в непрерывное движение (легато). Элементарные профили и ареалы в комбинации с непрерывным движением, выявленным, например, по почвенной карте, составят систему, или контрапункт. По сути, проводятся те же операции, которые предлагались ранее: находятся буквы алфавита форм почвенных горизонтов, профилей и ареалов, из них складываются слова, из слов — предложения и т. д. Но эти операции по составлению текста или музыкальной записи будут напрасными, если не установить организующее начало, связывающее слова и звуки в осмысленное единое целое. Для музыки, как и для почв, такое начало найдено — это «золотое сечение».
Композитор М. Марутаев («Техника и наука», 1977, № 9) в статье «Поверить алгеброй гармонию» показал, что музыкальная гамма — темперированный звукоряд — основана на золотой пропорции (1,618…). Эта числовая закономерность обнаружена в Периодической системе Менделеева, в соотношении размеров животных и человека, в расположении планет солнечной системы и в «осколках», образующихся при распаде урана.
Везде, подобно вездесущему Фигаро, присутствует эта поистине волшебная, но в то же время и самая простая пропорция. Уже найдена связь золотого сечения с теорией возвратных рядов, комбинаторной математикой, теорией чисел, теорией поисков… Теперь эта величина появилась в почвоведении.
Видимо, научное знание о почвах, совершив виток, вернулось, но уже в обновленном виде, к представлениям начала XX в. о симметрии аналогичных рядов почв. Теперь все почвы горизонтальной и вертикальной поясности Земли, а также ее частей можно рассматривать как симметричные с еще большим основанием, чем прежде.
Почвенный покров Земли обладает свойством изоморфизма. То есть в любой точке нашей планеты его морфологический облик сохраняет наиболее существенные и устойчивые черты относительно другой точки, расположенной в аналогичных пространстве, времени и условиях существования. Поэтому не удивительно, что за тысячи километров, в заморских странах, можно встретить «копию» своей родной почвы, сходную не только по внешнему облику, но и по вещественному составу. Именно это обстоятельство позволяет считать почву самостоятельным природным телом, имеющим свою геометрическую специфику. Как по внешним признакам различают виды растений, животных, минералов, так и по обобщенным образам почвы отличают один ее вида от другого.