Факультет

Студентам

Посетителям

Эволюция клетки и данные о степени самостоятельности клеток многоклеточных организмов

Сам факт клеточной организации всех живых существ находится вне всякого сомнения, и дискуссия в этом отношении является, бесспорно, анахронизмом.

Неясной, конечно, следует считать «клеточность» бактерий, спирохет, синезеленых водорослей и некоторых других. Мы также недостаточно знаем природу фильтрующихся вирусов и бактериофагов. Некоторые ученые продолжают рассматривать большинство вирусов даже не как «существо», а как «веществ о». Но это совершенно особая проблема, относящаяся к области эволюции жизни, а не к клеточной теории. Однако мы не можем вовсе обойти вопрос об эволюции клетки.

Мы полагаем, что именно бактерии, спирохеты и синезеленые водоросли, хотя и являются клетками, но построены по иному типу, чем ядерные клетки простейших и многоклеточных. Но значит ли это, что все эти формы следует рассматривать как переходные фазы между истинной клеткой и предклеточными структурами? Ведь формула «можно думать» совсем еще не значит «необходимо считать». По нашему мнению, гораздо логичнее признать полифилию живых существ, а не монофилию. Последняя, как мы полагаем, только лишь маловероятная догадка, основанная на весьма спорном положении, согласно которому сходство пропорционально родству. Если жизнь должна была возникнуть на Земле при определенных условиях, то она, конечно, возникала многократно в разных местах, причем условия не могли быть всюду идентичными. Утверждение же, что жизнь возникла только однажды, а лишь затем под влиянием внешних воздействий начала развиваться в разных направлениях, очень походит на «библейские рассуждения». Монофилитические представления, в частности, никак не объясняют «параллельные ряды» и конвергенции. Как, в самом деле, понимать удивительное сходство глаза некоторых моллюсков и позвоночных, сходство строения поперечнополосатых мышц у моллюсков (запирательная мышца пектена), насекомых и позвоночных, сходство в нервных связях в мозге. Правда, в этих примерах речь идет о полифилии органа, но это же относится и к полифилии организмов в целом.

Нет сомнения, что развитие живых структур должно было пройти длинный путь до возникновения клетки. Протозоолог Е. А. Минчин в 1916 г. образно выразил это так: «…путь от неорганизованной материи до амебы должен был быть гораздо длиннее, чем от амебы до человека». Длину этого пути мы, конечно не знаем, но где он длинен, там можно ожидать и тупиков развития. Именно таковыми следует, очевидно, считать синезеленые и сифонниковые водоросли и некоторые другие. Берталанфи по этому поводу писал, что природа неоднократно делала эксперименты создания крупных организмов без клеточной их дифференцировки, однако только принцип клеточной организации оказался прогрессивен.

Как известно, все одноклеточные организмы имеют микроскопические размеры. Очевидно, именно это свойство ставит пределы в их эволюции, т. е. она идет иначе, чем у многоклеточных, и своеобразно. Современные бактерии и спирохеты, оставаясь микроскопическими, в конечном итоге приобрели все же очень сложное строение. У них нет истинного морфологически целостного ядра, но есть хроматин, им свойствен генно-мутационный процесс, в них совершаются очень сложные и многообразные биохимические процессы. Эти организмы оказываются весьма приспособленными к условиям существования на нашей планете. Они тоже совершенствуются, но по иному пути, не создавая систем дифференцированных функций. Все же нет никаких оснований микробам приписывать принципиально иную структуру, и поэтому мы убеждены, что столь часто употребляемое микробиологами выражение «бактериальная клетка», совершенно правильно и законно, хотя клетка и построена несколько иначе.

Однако только клеточная расчлененность, несущая с собою определенную индивидуализированность частей, открывает широкие перспективы к совершенствованию и эволюции. Именно клеточность легко позволяет замену изношенной в результате функции ткани (физиологическая регенерация); она же легко обеспечивает рост организма и дифференцировку его частей в самых разных направлениях. Следует указать, что, как правило, только необратимая дифференцировка ведет к образованию симпластических структур (мышечные волокна, клетки Лангханса), образованию межуточного вещества из эктоплазмы фибробластов (а также остеогенез и хондрогенез) или резко отклоняющихся по строению клеток (мегакариоциты, лейкоциты; клетки Пуркиня коры мозжечка, пирамидные нервные клетки коры мозга и др.). Называть такие проблемы неясными, как это делает, например, Кацнельсон, нет совершенно никаких оснований и не нужно дезориентировать в этом отношении биологов и других специалистов. Основная проблема биологии заключается не в этих вопросах клеточных преобразований при деятельности организма, а в познании законов создания системности организма на всех уровнях его организации.

Беря в основу положение о системном развитии материи, мы должны считать клетку той первой ступенью организации, которая обладает всем комплексом свойств, характеризующим явление полноценной жизни. Эволюция организации жизни может идти разными путями: с одной стороны, усложнением структурности самой клетки, а с другой — путем соединения клеток в комплексы большей или меньшей сложности. Вместе с тем, как показывают многочисленные конкретные исследования, клетки, как таковые, находясь в ткани или в органе любой сложности, постепенно обезличиваются в целом, т. е. они интегрируются.

Во всяком случае, совершенно ясно, что понимание основ жизненных явлений без познания клетки немыслимо. Но эта мысль, как мы видели, приводила нередко к тому, что значение клетки в общей жизнедеятельности организма переоценивалось. Ошибка исследователей заключалась в том, что они не понимали, что клеточная структурность Metazoa есть лишь одна (и притом первая в своем роде) из ступеней их организации. Но все это нисколько не снижает значения изучения клетки в свете общебиологических проблем. В настоящее время учение о клетке в основном идет по двум руслам: 1) познание самой клетки как элементарной живой системы и 2) изучение их взаимоотношений в многоклеточном организме.

Когда мы утверждаем, что клетка является «элементарной» живой единицей, то этим мы хотим сказать, что она представляет собой предельную биологическую индивидуальность. Ядро и протоплазма сами по себе, взятые в отдельности, не являются полноценными живыми единицами. Поэтому вопрос о том, что является в клетке «живым», а что «мертвым», неправилен по существу. Проблема эта должна ставиться так: что является в клетке ее основной, обязательной частью, а что — факультативной.

Надо сознаться, что клетку мы все еще знаем очень недостаточно, хотя ее изучала и изучает армия ученых. Сводку по любому (даже малозначительному) вопросу приходится делать по десяткам (в лучшем случае), а то и многим сотням работ. Приведем только один пример. Такой частный, казалось бы, вопрос, как величина клетки, специально обсуждался более чем в 750 специальных работах. Описательная сторона в большинстве случаев изучена достаточно хорошо, но этим, как известно, задачи гистологии как науки еще далеко не исчерпываются. Например, мы точно знаем, что огромное, подавляющее большинство клеток имеет ядро (или эквиваленты этих структур). Морфология и даже химия клеточных ядер достаточно хорошо изучены, но об их роли в обмене веществ мы фактически почти ничего не знаем и судим о них лишь косвенно. Так, известно, что амеба, лишенная ядра, пищу заглатывает, но ее не ассимилирует; безъядерная растительная клетка не строит целлюлозной оболочки; в некоторых энергично работающих клетках ядро изменяет свою форму и структуру. Этим почти исчерпываются наши сведения о конкретной роли ядра в метаболических процессах клетки.

Другими словами, мы сравнительно хорошо знаем морфологию клетки, но почти не знаем «собственно биохимии» клетки (прежде всего в смысле физиологического значения ее компонентов). Но, может быть, это и вполне закономерно, ибо знание физиологии клетки является ведь по чисто техническим причинам последним этапом в познании одной из важнейших ступеней жизни, а сопредельные с биологией дисциплины, как и сама биология, не располагают достаточным фактическим материалом и достаточными обобщениями.

Что касается изучения проблемы взаимоотношения (структурного и функционального) клеток, то в этом отношении сделано также довольно много. Однако все эти данные носят большей частью весьма несистематический характер и нигде в целом, будучи объединены общей точкой зрения, не сведены. Но даже самое беглое их перечисление показывает, насколько многообразны фактические сведения, свидетельствующие в пользу системности клеток. Интереснейшие данные в этом отношении мы находим в исследованиях из самых разнообразных областей гистологии.

Может быть, основным вопросом в этой области является степень самостоятельности клетки сложного многоклеточного организма. В этом отношении весьма ценные данные получены методом культивирования тканей вне организма. А. Фишер и М. Т. Берроуз (1925) показали, что отдельные изолированные клетки нормальных тканей, будучи поставлены даже в наилучшие условия, не размножаются. Это было несколько позднее подтверждено еще более совершенной методикой Э. Майером и многими другими.

Отсюда можно сделать вывод, что в тканевой культуре мы имеем дело не с независимыми клетками и что последние создают общую тесно связанную систему. Таким образом, клетка многоклеточного организма несравнима в этом отношении с отдельной бактерией или клеткой протиста, обладающими полной самостоятельностью. Эту особенность клетки — невозможность ее полноценной жизнедеятельности в изолированном состоянии пне тканевого комплекса — Фишер трактовал в духе представления о физиологической интеграции. Однако тот же Фишер показал, что в потенции нормальные клетки все же сохраняют способность индивидуализироваться, и тогда они при определенных условиях растут и размножаются независимо от тканевого комплекса. Этот вывод сделан на основании сопоставлений с ростом в культурах клеток злокачественных опухолей, которые, как оказалось, будучи изолированными, могут продолжать развиваться и делиться.

Опыты культивирования нормальных тканей вне организма убедительно показали, что рост тканевой культуры является прежде всего ростом тканевого комплекса (своеобразной системы клеток). Это выражается прежде всего в том, что рост представляет собой периодическое явление и клеточные деления распределены в ткани не случайно, а располагаются по периферии зоны роста. Опыты с регенерацией тканевых культур показали, что при поранении растущей культуры восстанавливаются все изъяны, причем скорость роста по раневой поверхности всегда идет быстрее, чем по неповрежденному краю. Следовательно, вырезание участка из зоны роста вызывает нарушение какого-то равновесия, которое затем вновь восстанавливается. Надо считать, что влияние целого (в данном случае всей культуры) на часть — регенерирующий участок ткани — имеет принципиально ту же природу, как и влияние целого организма на любую его часть.

Аналогичные ограничивающие и побуждающие влияние организма как целого на составляющие его клетки могут быть легко обнаружены специальными исследованиями. Примеры можно взять из различных областей; мы остановимся опять на явлениях роста.

Показано, что даже такой элементарный признак, как величина клетки, определяется в значительной мере организмом в целом. Это выражается в том, что каждый орган, каждая его система имеет клетки в норме вполне определенной для каждого вида животных и растений величины. Стоит только ослабить или изменить влияние организма, например путем слабого отравления или перерезки нерва, как тотчас же клетки начинают укрупняться.

В этом случае начинается выявляться свойственная клеткам тенденция к росту. Приведем еще один показательный пример влияния целого на часть. Известно, что у болотной лягушки (Rana ridibunda) клетки кожи в 2 раза мельче, чем у травяной лягушки (Rana temporaria). У головастиков сравнительно легко удается пересаживать лоскуты кожи от одного вида к другому. Можно было надеяться, что, исходя из размеров клеток, можно будет легко следить за судьбой пересаженной ткани. Однако оказалось, что размеры клеток трансплантата в очень короткие сроки принимают размеры, характерные для кожи хозяина, т. е. клетки пересаженного лоскута кожи головастика болотной лягушки на теле головастика травяной лягушки становятся в 2 раза крупнее и, наоборот, при обратной пересадке от R. tcmpoiaria к R. ridibunda клетки становятся в 2 раза мельче. Таким образом, можно считать доказанным, что именно организм в целом контролирует величину клеточных элементов.

Еще более отчетливые результаты получены при изучении распределения делящихся клеток в различных органах. Например, В. Корнфельд (1922), одним из первых изучая клеточные деления в роговице глаза саламандр, установил определенные ритмы митотической деятельности20. Много писал об «эпидемиях» митозов Гурвич; то же отмечали и другие. Экспериментально установлено, что митозы в роговице глаза проходят в определенном направлении (градиент) и что распределение митозов зависит, в частности, от давления века. В коже животных (мышей, крыс и многих других) обнаружен суточный ритм делений; так оказалось, что в 12 часов дня митозов в 3 раза больше, чем в 8 часов вечера. Интенсивность клеточных делений находится в определенной связи с половым созреванием животного, половым циклом и его возрастом.

Число подобных примеров легко можно значительно увеличить. В заключение мы укажем только еще на одну группу фактов, касающихся накопления запасных веществ клетками печени грызунов. Установлено, что максимумы накопления гликогена, с одной стороны, и жиров и желчи — с другой, постоянны и закономерно чередуются в течение суток. Оказалось, что суточный ритм работы свойствен не только клеткам печени, но и ряду других органов. Так, показано, что интенсивность всасывания пищи (жир) эпителиальными клетками кишечника также подчиняется дневному ритму. Поэтому, если скармливать мышам (а возможно, и человеку) пищу в неурочное время, то всасывание, у предварительно голодавшего животного, почти не происходит. Отсюда ясно, как важен правильный распорядок дня в питании.

Всеми перечисленными исследованиями устанавливается зависимость работы отдельных органов, тканей и клеток от общих координаций частей организма, в конечном итоге, как нередко говорят, от «организма как целого».

Краткие сведения, которые мы выше привели, свидетельствуют о различно выраженной интеграции клеточных элементов в органах Metazoa, о большем или меньшем «растворении» части (клетки) в целом (организме), т. е. примате высшей ступени системности (организации) над ступенью низшей, соподчиненной. Исходя именно из этого вывода, мы и получаем конкретную расшифровку положения что клеточный комплекс Metazoa представляет собой нечто большее, чем простая сумма клеток. Вместе с тем именно эти данные являются блестящим доказательством правильности закона перехода количественных изменений в качественные, объясняющего своеобразие организованной системы по сравнению со свойствами составляющих ее единиц.