Факультет

Студентам

Посетителям

Фитоалексины растений

В 1940 г. немецкий профессор К. Мюллер со своим ассистентом Г. Бергером опубликовал статью, которой суждено было открыть новую страницу в учении об иммунитете растений к инфекционным болезням.

В статье были представлены доказательства (правда, косвенные), что устойчивость растений, основанная на уже известной реакции СВЧ, связана с накоплением в некротизированных клетках антибиотиков. Эти вещества были названы фитоалексинами (от греческого фитон — растение, алексо — отражение атаки). Одновременно в статье были сформулированы основные положения будущей фитоалексинной теории.

Мюллер с сотрудниками уже в течение ряда лет работал над выведением фитофтороустойчивых сортов картофеля. Он знал, что у фитофторы существуют различные но вирулентности расы и что один и тог же сорт картофеля, высокоустойчивый к одной расе возбудителя фитофтороза, т. е. несовместимый к ней, легко поражается другой, совместимой расой. Совместимая раса проникала в клетки картофеля, долго и успешно в них развивалась, прежде чем клетки погибали. Но те же клетки погибали сразу (некротизировались), как только в них проникала несовместимая раса, вслед за тем погибали и гифы гриба. Разыгрывалась типичная реакция СВЧ, о которой в те годы уже хорошо знали.

Мюллер задумал выяснить, а нет ли в погибших некротических клетках картофеля некоего токсического начала, которое и губит паразита. Взяли и заразили ломтики клубней картофеля вначале несовместимой расой, которая вызывала некроз клеток, а затем день спустя ту же поверхность снова заразили, но уже совместимой расой, которая в обычных условиях должна расти на этом сорте картофеля. И хотя она должна была расти, однако почему-то не росла. Тогда попробовали заразить несовместимой расой только часть ломтика, нанося взвесь спор паразита на поверхность среза в виде креста. А затем через день, как н раньше, всю поверхность ломтика заражали спорами совместимой расы. Спустя несколько дней увидели, что получилось. Весь ломтик был покрыт белым пушком спороношения гриба, кроме темных мест, на которые предварительно наносили несовместимую расу. На белом фоне заражения чернел незаряженный крест. Совместимая раса не сумела поразить некротизированную ткань.

Итак, предварительное инфицирование несовместимой расой паразита предохранило картофель от последующего заражения. Более того, оно защищало ломтики и от второго паразита картофеля — возбудителя сухой гнили Fusarium coeruleum. Защищенными оказались только поверхностные клетки и несколько нижних, прилегающих к ним рядов. Остальные клетки остались восприимчивыми. Вот, собственно, и весь опыт, который позволил его авторам не столько доказать, сколько предсказать существование в погибших клетках токсических веществ. Таким образом, на основании очень простых по технике исполнения опытов были сделаны далеко идущие широкие обобщения.

А теперь предоставим слово самим автором и послушаем, какие выводы они сделали из своего эксперимента. Воспроизведем их почти дословно, но в более популярной форме.

1. Причиной гибели паразита в клетках устойчивого сорта картофеля не может быть присутствие антибиотического вещества, которое уже имелось в клубне до его инфицирования. Ею не может быть и отсутствие в клетке веществ, необходимых для развития паразита. Причина гибели заключается в изменении состояния клеток хозяина, которые контактировали с паразитом. В результате их изменения образуется повое антибиотическое соединение, которое мы называем «защитной реакцией».

2. Защитная реакция связана с живыми клетками хозяина.

3. Антибиотическое вещество возникает либо активируется в клетках хозяина и может быть конечным продуктом «некробиоза», вызванного паразитом.

4. Это еще не выделенное и поэтому пока гипотетическое защитное вещество, названное фитоалексином, не специфично по своему действию. Оно подавляет по только фитофтору, по и другие грибы, паразитирующие на картофеле, а также сапрофитные грибы. Различные виды паразитов различаются по чувствительности к фитоалексину.

5. Судьбу паразита, так же как и хозяина, решает чувствительность его клеток к некоему соединению, образованному фитофторой, причем чем больше чувствительность клеток растения, тем выше его устойчивость. Способность клеток хозяина реагировать определена генотипически и проявляется в скорости, с которой образуется защитное вещество.

6. Защитная реакция проявляется только в тканях, оккупированных грибом, а также непосредственно прилегающих к ним, а не распространяется на весь индивидуум.

7. Если в устойчивых сортах происходит иммунизация части ткани, пораженной патогеном, то в восприимчивых наоборот: клетки хозяина, пораженные вирулентной расой, через некоторое время становятся чувствительны даже к грибам, неспособным поражать интактные клубни картофеля. При этом различные грибы способны поражать зараженные фитофторой ткани в различной степени.

8. Состояние устойчивости не наследуется; наследуется только способность к его приобретению, что происходит после контакта с паразитом. В результате этого срабатывает механизм, превращающий часть атакуемых паразитом клеток из состояния индифферентности в состояние устойчивости.

Прошло 45 лет. Многое прояснилось, некоторые выводы пришлось пересмотреть и уточнить. Но в целом они выдержали испытания временем.

Сейчас, оглядываясь назад, становится ясным, что в 1940 г. было открыто новое биологическое явление — способность растительных тканей образовывать в ответ на инфекцию антибиотические вещества, подавляющие развитие патогена.

А что же было дальше? А собственно, дальше ничего не было, по крайней мере в течение последующих 18 лет до того момента, когда тот же Мюллер выступил с новой статьей, в которой изложил метод быстрого и простого обнаружения фитоалексинов. Метод получил название капельных диффузатов.

Он очень прост. Из зеленых бобов фасоли осторожно вынимают семена, а на их место в семянные впадины помещают капли воды со спорами патогена. Споры прорастают, выделяя вещества, проникающие в ткани стручка. В ответ на это в растительной ткани образуются фитоалексины, которые диффундируют в инфекционные капли с тем, чтобы подавить в них рост паразита. Если через 2 суток такие капли собрать, проросшие споры удалить, то это и есть диффузат. Чем хороши стручки? Тем, что на их внутренней поверхности нет кутикулы, и фитоалексины поэтому легко проникают в инфекционные капли из тканей, в которых образуются.

Последствия нового метода вскоре дали себя знать. Уже через год таким способом из бобов гороха был выделен первый фитоалексин, который был назван пизатип (от латинского Pisum — горох). Честь открытия принадлежит австралийскому фитоиммунологу Круикчанку и его сотруднице Перрин. Еще через год эти же авторы получили другое вещество, на этот раз из фасоли, и назвали его фазеоллином (от латинского Pliaseolis — фасоль). Оба вещества оказались хроманокумаранами.

И тогда стало ясным, что два фитоалексина уже давно известны, только никому не приходило в голову их так называть. Это фуранотерпеноид — ипомеамарон, который еще в 1943 г. обнаружил в батате Хнура, и фенантрен — орхинол, выделенный Гойманом и Кернам из клубней орхидей в 1945 г. Пятым и шестым были сесквитерпеноиды картофеля — ришитип и любимиц, выделенные в Японии в лаборатории Томияма и в СССР, в нашей лаборатории.

Ежегодно появлялись работы, которые захватывали все новые и новые ряды исследователей. В их числе оказались и авторы этих строк. Затем поток сообщений принял прямо-таки лавинообразный характер. В среднем 25—30% всех сообщений в мировой литературе по фитоиммунологии посвящалось и посвящается фитоалексинам. Последние стали самой горячей точкой фитоиммунологии.

Вот что мы имеем сегодня. Сейчас уже открыты около 200 фитоалексинов. Они обнаружены у голосемянных и покрытосемянных, однодольных и двудольных, в число которых входят растения, принадлежащие более чем 20 семействам. Среди них бобовые, пасленовые, мальвовые, розоцветные, вьюнковые, зонтичные, сложноцветные и др. Долгое время никак не удавалось обнаружить фитоалексины у злаковых и тыквенных. Во всяком случае, их не удавалось обнаружить теми методами, с помощью которых у представителей других семейств это сделать удалось. Однако в самое последнее время появились сообщения, что и у растений этих двух важнейших семейств такие вещества имеются.

До настоящего времени нет общепринятой номенклатуры. А каждый исследователь, открывающий новый фитоалексин, естественно, хочет как-то его назвать: кто по названию вида растений, из которого он выделен, кто по наименованию сорта, а кто — в соответствии с химической природой. Например, ришитип и любимиц получили свои названия от сортов картофеля (Ришири и Любимец), из которых были впервые выделены, фитуберин — от наименования патогена — фитофтора и видового названия культурного картофеля — Solanum tuberosum, солаветивои — от родового наименования Solanum.

До сих пор много споров вызывает само определение фитоалексинов. Некоторые ученые предлагают их называть стрессовыми метаболитами, т. е. веществами, возникающими в растениях в ответ на неблагоприятные воздействия. Ведь стрессы есть и у растений тоже. Но, во-первых, эти вещества возникают совсем не на всякие стрессы, а во-вторых, в растительных тканях, попавших в условия стресса, возникает много разных веществ, по совсем не все они являются фитоалексинами.

В определении фитоалексинов обязательно должна Сыть отражена их главная биологическая функция — защита растений. Поэтому нам представляется, что фитоалексины — низкомолекулярные антибиотики высших растений, которые практически отсутствуют в их здоровых тканях, возникают в ответ на контакт с фитопатогенами и при быстром достижении антимикробных концентраций могут выполнять защитную роль в фитоиммунитете. Поскольку слишком много соединений-самозванцев претендуют быть названными фитоалексинами, канадский исследователь Стоессл установил, что эти вещества должны иметь 4 обязательных признака: иметь умеренно низкую молекулярную массу; обладать фунгитоксичностью; отсутствовать в здоровой ткани растений, но индуцироваться в ней патогенами; синтезироваться заново из мелких универсальных блоков (о последнем мы уже говорили, когда обсуждали классификацию антибиотических веществ).

Но вот насчет фунгитоксичности. Мюллер хотя и обнаружил фитоалексины в зараженных грибом тканях картофеля, однако назвал их не антигрибными, а антибиотическими веществами, подавляющими рост патогенных микроорганизмов, а не только грибов. До самого последнего времени выделение фитоалексинов рассматривали только как средство защиты растений от паразитарных грибов, однако сейчас установлено, что многие из них обладают антибактериальным и даже антинематодным действием.

Сюда относятся вещества, различные по химическому строению. Они являются конечными продуктами того измененного обмена веществ, который возникает в растительных тканях в ответ на заражение. А у растений разных таксономических групп происходят разные изменения обмена, в результате чего у разных растений образуются его разные конечные продукты. Например, у пасленовых под влиянием заражения начинают образовываться сесквитерпеноидные вещества, которых раньше в здоровых тканях не было, у бобовых — изофлавоноиды, у сложноцветных — полиацетилены.

Получается, что структура фитоалексина является как бы признаком определенного таксона: вида, рода, а иногда и семейства растений.

Однако у всякого правила есть свое исключение. Например, только что обнаружили, что у томатов, наряду с сесквитерпеноидными, существуют и фитоалексины ацетиленовой природы.

У каждого растения образуется не один фитоалексин, а несколько. Однако все они представляют собой группу химически родственных соединений. То, что их много — очень важно, поскольку микроорганизмы, как известно, легко приобретают нечувствительность к антибиотикам. Но если привыкнуть к одному антибиотику относительно легко, то к двум уже труднее, а к нескольким — совсем трудно. К тому же образующиеся вещества хотя и близкие родственники, по часто обладают различными способами воздействия на патоген, т. е. действуют вкупе, дополняя друг друга. Так, у картофеля, зараженного фитофторой, обнаружено около десятка стрессовых метаболитов, примерно столько же их в инфицированных тканях фасоли. Правда, не все из них еще завоевали право называться фитоалексинами, поскольку пока недостаточно исследованы.

Еще Мюллер заметил, что фитоалексины являются «продуктом некробиоза» клеток хозяина. Он и здесь не ошибся, поскольку сейчас установлена связь между некрозом клеток растений, погибающих в ходе реакции СВЧ, и образованием этих веществ. Правда, продуктом некроза фитоалексины быть не могут, поскольку их синтез требует энергии и поэтому не может протекать в погибших или погибающих клетках. Скорее погибающие клетки подают своеобразный сигнал для синтеза.

Синтез фитоалексинов берут на себя здоровые клетки, окружающие некроз, так называемые «бордюрные» клетки. Именно в них эти вещества и образуются, а затем направляются навстречу опасности — в некротизированные клетки, в которых находится паразит. Нечто вроде армии, которая мобилизуется в тылу и посылается на фронт. Кстати, для того чтобы защищаться, тыл определенного размера необходим. Например, ломтик фитофтороустойчивого картофеля теряет свою устойчивость, если он слишком тонкий. Подсчитано, что для успешного сопротивления нужен слой не менее чем из 15 рядов клеток, иначе при заражении не из чего будет синтезировать фитоалексины. Их перемещения из здоровых клеток в некротизированные показаны для устойчивых сортов батата, картофеля, бобов и сои. Что руководит этим направленным током в некротизированные клетки — никто не знает. Может быть, у некротизированных клеток нарушается проницаемость клеточных мембран, в результате чего через них легче проникают фитоалексины? Ведь большинство из них липидорастворимые вещества, а чем лучше вещество растворяется в липидах, тем больше у пего шансов пробраться через мембрану.

Фитоалексины не только подавляют прорастание спор и рост фитопатогенов, по некоторые из них, кроме того, ингибируют активность их экзоферментов, иными словами, и убивают, и разоружают агрессора.

Считается, что фитоалексины являются антибиотиками «широкого спектра действия», поскольку они токсичны не только для грибов и бактерий, но и для некоторых нематод и насекомых, а также для клеток растений и животных. Известно, например, что ипомеамарон батата повреждает печень, является нервно-паралитическим ядом. Госсипол хлопчатника вызывает застой и отек органов, падение гемоглобина, разрушение эритроцитов, блокирует спермообразование. Некоторые фитоалексины бобовых вызывают гемолиз эритроцитов.

Растительные клетки не способны выдерживать высокие концентрации фитоалексинов, может быть поэтому они и накапливаются в токсических дозах в погибших клетках, которым уже нечего терять. Вероятно поэтому их передвижение из здоровых клеток в некротизированные может происходить, минуя содержимое клеток, за пределами их цитоплазматической мембраны, т. е. апопластно по взаимосвязанной системе клеточных стенок и межклетников. Такой способ передвижения удалось установить у клубня картофеля, инфицированного возбудителем фитофтороза.

Поскольку фитоалексины принадлежат к различным химическим классам, трудно ожидать, что они будут иметь единый механизм токсического действия. Считается, что фитоалексины действуют не на специфическую мишень в клетке (в отличие от микробиальных антибиотиков и системных фунгицидов), а подавляют сразу многие звенья обмена, т. е. являются мультисайтовыми ингибиторами. Однако у многих из них есть общее свойство — они повреждают мембраны, прежде всего окружающую клетку цитоплазматическую мембрану.

Большинство устойчивых растений в ответ на инфицирование образует большее количество фитоалексиноаз, чем восприимчивые.

Однако при оценке защитной роли фитоалексинов нужно учитывать не только их суммарное количество, но также скорость образования и местонахождение (локализацию фитоалексинов в растении). Правда, сделать это очень трудно.

Представьте себе сосуд ксилемы (трахею) хлопчатника, по которой снизу вверх от корней к листьям вместе с током воды распространяются споры возбудителя инфекционного увядания (вилта). Что происходит в устойчивом растении? Просвет сосуда быстро перекрывается за счет образования в нем тилл и пробок, о которых ужо шла речь. В закупоренном сосуде прекращается ток воды и споры попадают в ловушку, накапливаясь в пространстве сосуда ниже места закупорки. Вот тут-то за них и принимаются фитоалексины. Локальное местонахождение спор создает возможность создания вокруг них токсических концентраций антибиотиков, которые быстро с ними расправляются.

Вот так в хлопчатнике реализуется принцип «в нужное время, в нужном месте н в нужном количестве». Кстати, обратите внимание, что реализовать этот принцип возможно только, если в дело включаются два типа защитных реакций: формирование механических преград в виде пробок и образование фитоалексинов. Каждая реакция в отдельности не смогла бы сработать. Это и есть синергизм защитных реакций растений, при котором одна из них дополняет другую.

А в восприимчивом сорте хлопчатника споры паразита, не встречая препятствий со стороны растений, спокойно распространяются по его сосудам. Образование фитоалексинов происходит даже в большем объеме, чем в устойчивом сорте (во многих местах, где рассеяны споры паразита), да только это мало помогает. Восприимчивое растение тратит много сил на образование фитоалексинов, но не в состоянии вовремя остановить распространение спор и создать вокруг них токсическую зону, поэтому паразиту удается захватить все растение.

Известны данные, когда удаление фитоалексинов из тканей устойчивого растения превращает его в восприимчивое и, наоборот, добавление этих веществ к восприимчивому растению делает его устойчивым.

Если растение выдержать в плохих для него условиях (при повышенной температуре, недостатке кислорода), то его болезнеустойчивость падает и параллельно уменьшается способность образовывать фитоалексины. В хороших условиях, наоборот, возрастает как устойчивость, так и образование антибиотиков. Интересно, что если после временного воздействия повышенной температуры растение вновь перенести в условия нормальной температуры, где оно через некоторый срок приходит в себя, то вместе с возвращением болезнеустойчивости восстанавливается и способность образовывать фитоалексины.

Если устойчивые растения обработать определенными ингибиторами обмена, которые, не затрагивая паразита, подавят в растительных тканях образование ферментов, ответственных за синтез фитоалексинов, то такие растения из устойчивых превращаются в восприимчивые. Более того, описаны случаи, когда устойчивое растение, в котором тем или иным способом подавлена способность к образованию фитоалексинов, становится восприимчивым не только к своему специализированному патогену, но и к тем микроорганизмам, которые никогда ранее это растение не поражали. Иными словами, фитоалексины защищают растение не только от его специализированных паразитов (сортовая устойчивость), но и от неспециализированных к нему патогенов (видовой иммунитет).

Можно привести еще много примеров того, как коррелирует устойчивость растений с их способностью образовывать фитоалексины. Однако ученые со свойственной им скрупулезностью требуют все новых и новых доказательств участия этих веществ в защите растений. Корреляция между их образованием и устойчивостью к болезням получена для десятков сортов растений. Однако когда сравнивают между собой разные сорта растений, всегда есть опасность, что их способность образовывать фитоалексины определяется какими-либо иными свойствами сорта, а не только его устойчивостью к тому или иному патогену. Генотип сортов может оказаться настолько различным, что их вообще трудно сравнивать между собой по устойчивости.

Более достоверные сведения можно получить на изогенных линиях растений. Эти линии выравнены по всем генам, кроме одного, в нашем случае по гену устойчивости к той или иной болезни. Правда, на практике получаются пне изогенные, а скорее близкие к изогенным линии. Оказалось, что устойчивые линии кукурузы, льна, перца, томатов, сои образуют фитоалексины вдвое, втрое, а то и в десять раз интенсивнее, чем соответствующие восприимчивые линии.

Собственно, что более всего смущает фитоиммунологов? Да тот же самый уже знакомый нам вопрос: а всегда ли в устойчивых растениях фитоалексины образуются в нужном месте, в нужное время и в нужном количестве, чтобы покончить с паразитом? Таких данных пока еще очень мало. И не потому, что поведение этих веществ редко соответствует такому требованию, а потому, что методы определения их локального местонахождения еще не разработаны. К тому же о токсичности фитоалексинов мы пока еще судим только по тому влиянию, которое они оказывают на патогены, будучи добавленными в среду его роста. А будет ли эта величина соответствовать их токсичности в растительных тканях? Например, возбудитель корневой гнили гороха индуцирует в его тканях концентрации низатина, в несколько десятков раз превышающие те дозы, при которых рост гриба полностью подавляется в пробирке, тем не менее это не мешает ему развиваться в содержащих низатин тканях. Значит, токсичность веществ в растениях и в пробирке может не совпадать?

Тем не менее из числа всех биохимических показателей, известных нам, образование фитоалексинов лучше остальных коррелирует со свойством болезнеустойчивости. И это крайне важно, поскольку для решения ряда практических задач, таких, как селекция, интродукция, сортоиспытание растений, необходимы показатели, характеризующие устойчивость растительных тканей к болезням. Насколько нам известно, уже сейчас не без успеха предпринимаются попытки использовать фитоалексины как объективный критерий устойчивости растений.

Хотя роль фитоалексинов в сортовой устойчивости более очевидна, чем других групп антибиотиков, тем не менее многие специализированные патогены обладают способностью и их преодолевать. Если бы это было не так, то на свете не существовало бы пи специализированных патогенов, ни восприимчивых к ним сортов растений. Многие специализированные некротрофы обладают способностью разлагать образовавшиеся фитоалексины своего растения-хозяина — низатин, фазеоллин, помеамарон, вайероновую кислоту, капсидиол и др. В основе процесса лежат самые разнообразные химические превращения — окисления, гидроксилирования и др. Часто детосикация осуществляется фитопатогепом в несколько этапов, причем каждый последующим продукт ферментативного превращения обладает меньшей фунгитоксичностью, чем предыдущий. Например, нектрия галлообразующая детоксицирует фитоалексин яблони — бензойную кислоту в 2 этапа. Вначале бензойная кислота превращается в n-оксибензойную, при этом токсичность по сравнению с исходной падала в 20 раз. Затем n-оксибензойная кислота деградировала в протекатеховую, токсичность которой в 40 раз ниже исходной.

Интересно, что различные грибы детоксицируют один и тот же фитоалексин различными путями, а один и тот же патоген превращает родственные по строению фитоалексины одним и тем же путем.

Однако детоксикация фитоалексинов своего растения-хозяина не является единственным путем их преодоления. Другой возможностью является способность специфических патогенов препятствовать образованию фитоалексинов в растении. Это может достигаться за счет их способности проникать в растение незамеченным, о чем пойдет речь при дальнейшем изложении. Такой механизм преодоления защитных реакций растения патогеном наиболее вероятен среди партнеров, взаимоотношения которых укладываются в систему ген—на—ген, т. е. для высокоспециализированных биотрофов.