Факультет

Студентам

Посетителям

Границы температуры для живых существ

Для химических процессов необходима тепловая энергия. Для сложных биохимических реакций ее требуется особенно много.

Поэтому жизнь в активном состоянии возможна лишь при достаточно высокой температуре среды. От количества тепла, получаемого организмом, зависят любые физиологические процессы, их интенсивность, а в некоторых случаях и их направление.

Каковы же температурные условия жизни на Земле. У большинства организмов жизнедеятельность протоплазма возможна в пределах от минус 4 до плюс 40—45°. При постепенном повышении температуры удается повысить теплоустойчивость клеток и организма, но до определенного предела, после которого начинается разрушение ферментов и других белковых соединений, вызывающее смерть. Однако в природе возникли и исключительно теплоустойчивые и теплолюбивые организмы. Как известно, с увеличением глубины температура земной коры повышается. Микробиологи считают, что нижней границей биосферы (т. е. областью земной коры и атмосферы, населенной жизнью) является изотерма в +100°. Особые виды бактерий были найдены в известняках на глубинах до 500 м от поверхности Земли. Эти бактерии жили при +35°.

Некоторые животные и водоросли могут населять горячие источники, в которых обычные организмы «свариваются» в несколько минут или секунд. Так, например, имеются водоросли, которые растут в горячих озерах при +90°. В некоторых горячих источниках при +81° найдены круглые черви — нематоды; личинки мух — при +69°, а улитки при +47, +50°.

У организмов, не приспособленных к жизни при постоянно высоких температурах, сопротивляемость нагреванию, конечно, значительно ниже. Но она может меняться и зависит, как выяснилось, от гормональных процессов и от содержания воды и жиров в протоплазме. Клетки животных редко длительное время переносят температуры выше 40°. Но в период покоя, когда снижается содержание воды, теплоустойчивость повышается. Так, например, колорадские жуки во время диапаузы (период покоя, остановки развития у насекомых) выносят в течение часа температуру +58°.

У микроорганизмов в состоянии покоя (цисты, споры) количество воды уменьшается очень резко, протоплазма становится вязкой, она не подвергается денатурации при температурах кипения воды, а иногда и при + 130, +150° (под давлением).

Другие организмы, напротив, приспособились к очень низким температурам, к жизни в наиболее холодных районах нашей планеты. Так, в районе полюса холода северного полушария — в Верхоянске — насчитывают до 200 видов растений. Антарктический материк почти совершенно безжизнен; здесь не хватает тепла, нет почвы, и сплошные массы вечного льда покрывают материк. Но на участках, обнаженных ото льда («оазисах»), найдено несколько десятков видов различных беспозвоночных животных и низших растений. Они живут здесь несмотря на то, что минимальные температуры достигают в Антарктиде —80° и ниже.

Стоит задуматься над тем, почему жизнь прекращается при низких температурах. При нагревании денатурируются белки, а при охлаждении оказалось, что наиболее опасно образование льда в тканях и клетках. Лет 30 назад распространено было мнение, что многие животные, в том числе и позвоночные — рыбы, лягушки, зимой промерзают, а весной вновь оживают. Впоследствии выяснилось, что это не так: кристаллы льда в протоплазме клеток высокоорганизованного животного неминуемо нарушают ее структуру, клетка гибнет.

Но если клетка теряет воду, устойчивость ее к холоду повышается. Из-за отсутствия воды клетки и ткани не замерзают. Так, например, некоторые относительно примитивные животные — коловратки, тихоходки, нематоды — в высушенном состоянии способны переносить охлаждение вплоть до температур, близких к абсолютному нулю. Такой же выносливостью обладают споры и семена растений.

Около 20 лет назад было обнаружено очень интересное явление, поразившее биологов. Если быстро погрузить отдельные живые клетки или микроорганизмы в жидкий воздух (около —190°), они мгновенно замерзают, но после оттаивания остаются живыми. Оказалось, что при очень быстром охлаждении вода не кристаллизуется и застывает, как стекло. Это и сохраняет жизнь клеткам.

Следовательно, не сама низкая температура, а лишь кристаллизация воды губительна для живой системы.

Микроорганизмы в виде спор, цист, а некоторые и в активном состоянии могут выносить температуру жидких газов (от —180 до —271°). Как показали исследования последних лет, клетки высокоорганизованных животных и растений при определенных условиях тоже могут переносить сверхнизкие температуры. Приведем несколько примеров.

Клетки из разных тканей животных помещали на некоторое время в раствор глицерина, а после этого переносили в жидкий газ с температурой до —196°. Отогретые после этой процедуры клетки «оживали». Сперматозоиды млекопитающих — быка, барана, кролика и других сохранялись в состоянии анабиоза при температуре около —196° и после отогревания не потеряли способности активно двигаться и оплодотворять яйцевую клетку. В опытах со сперматозоидами быка удалось «оживить» эти клетки после 8 лет пребывания при сверхнизкой температуре.

Но и без специальных защитных веществ, вроде глицерина, некоторые насекомые, зимующие в высоких широтах, могут переносить глубокое охлаждение. В природе они охлаждаются до —20, —30, может быть, даже —50°. В лаборатории Института цитологии АН СССР постепенно охлаждали зимующих гусениц кукурузного мотылька до —183 и —196°. Самые разнообразные клетки их тела оставались после оттаивания живыми в течение многих недель.

Что же происходит при такой низкой температуре, почему клетки не погибают? В природе наиболее часто защитой от замерзания является переохлаждение жидкостей тела. Известно, что при некоторых условиях вода не замерзает при 0°. а охлаждается без замерзания до значительно более низких температур. То же происходит и в клетках. В этом состоянии переохлаждения, исследованном подробно у насекомых, животное неподвижно, находится в оцепенении, но остается живым. Личинки жука короеда — заболонника струйчатого оставались, по нашим наблюдениям в природе, мягкими, не замерзшими при температуре от —48 до —55° в течение трех суток.

Но и кристаллизация жидкостей тела не всегда приводит к смерти. Еще в 1937 году нам удалось установить, что некоторые виды насекомых способны выдерживать замерзание с кристаллизацией жидкостей тела. Например, гусеницы кукурузного мотылька, зимующие в стеблях травянистых растений, при —30° нередко замерзают так, что становятся совершенно твердыми, и сохраняются в течение многих дней, после оттаивания они продолжают жить. В специально поставленных опытах эти гусеницы «оживали» после суточного пребывания в температуре —78° в замерзшем, твердом, как стекло, состоянии.

Но и эта температура еще не «рекордная» Недавно японские исследователи Асахина и Аоки поставили ряд экспериментов с постепенным охлаждением насекомых и других беспозвоночных — сперва их помещали в температуру —30°, после чего замерзшие животные сразу переносились в —183 или в —196°. После оттаивания некоторые из них оказались живыми. Такую температуру переносили в замерзшем состоянии довольно сложные животные, имея нормальное количество воды в теле.

В 1961—1962 годах в Институте цитологии АН СССР ставились опыты с глубоким охлаждением большого количества гусениц кукурузного мотылька. Оказалось, что свыше 70% гусениц переживали 25-суточное охлаждение до —78° и около 40% смогли развиваться и превращаться в куколок и бабочек после суточного пребывания при столь низкой температуре. Многие из этих гусениц под влиянием длительного процесса закаливания при температурах около 0° оставались живыми, пробыв 1—2 суток в жидком азоте (—196°).

Высокоорганизованные животные погибают уже при не значительном понижении температуры тела и не переносят даже небольшого количества льда во внутренних органах. Но высшие растения переносят очень низкие температуры

Очень интересны, например, опыты, проведенные Тумановым с сотрудниками в Институте физиологии растении АН СССР. Для опыта были взяты ветки различных древесных пород, березы бородавчатой, черной смородины, яблони и других. Срезанные ветви березы закаливались сначала при —5°, а затем каждый день температура зимой понижалась до очень низкой температуры, пока не достигла —60° После этого ветви опускались на двое суток в жидкий азот (—196°) и затем отогревались. Ветви смородины закаливались более длительно и из жидкого азота переносились в жидкий водород (—253°) на два часа, откуда снова в азот, который постепенно испарялся в течение шести суток. В дальнейшем, когда ветви были помещены в воду, почки на ветвях распускались. Без закаливания ветви погибали при —45°. Совсем не выдерживали охлаждения ветви, срезанные летом

Невольно возникает вопрос, почему живые ткани могут переносить такие низкие температуры, каких не бывает на Земле? Известно, что развитию высокой холодоустойчивости способствует закаливание при низкой температуре, постепенное понижение интенсивности обмена веществ при наступлении зимнего покоя, спячки, в это время уменьшается количество воды, способное превратиться в лед при охлаждении, увеличивается количество веществ, которые препятствуют замерзанию. Но основная причина в том, что клетки могут переходить в состояние анабиоза, при котором временно совсем прекращается обмен веществ. Это состояние наступает при температурах, которые не слишком низки и наблюдаются на Земле. Когда же организм находится в состоянии анабиоза, дальнейшее охлаждение для него уже не имеет существенною значения.

Приспособление живых существ шло и по другим направлениям — позвоночные, например, приобрели способность сохранять и повышать активность обмена при низких температурах. Так возникла теплокровность, при которой температура тела сохраняется независимо от температуры среды.

Некоторые виды насекомых, подобно теплокровным животным, могут сохранять активность при морозах до —10° и даже ниже. По-видимому, для этого достаточно тепла, выделяющегося при мышечной работе. Быть может, этому способствует также поглощение инфракрасных лучей Солнца

Для космической биологии очень интересно изучить, существуют ли физиологические различия между органами и тканями животных, живущих в разном климате. И если такие различия есть, нельзя ли обнаружить их между клетками очного и того же животного, расположенными внутри и на поверхности тела, которая испытывает значительные колебания температуры?

Очень небольшое количество подобных наблюдений открывает увлекательные перспективы для будущих исследований.

Известно, что у арктических и антарктических птиц не покрытая перьями поверхность ног может иметь очень низкую температуру кожи и не страдать при жестоких морозах Установлено, что периферические нервы у арктических птиц и млекопитающих проводят импульсы при более низкой температуре, чем соответствующие нервы у животных, приспособленных к тропическому климату или живущих в лабораторных условиях. Когда берут ткани для культивирования в искусственных условиях от различных грызунов, то оказывается, что клетки их тем дольше сохраняют жизнеспособность при низкой температуре, чем в более суровых условиях жил дикий зверек.

У растений и животных Арктики и высокогорий способность к активной жизни нередко как бы сдвигается в сторону низких температур по сравнению с их родичами из более теплых мест. Так, в умеренном климате у большинства организмов (кроме, конечно, теплокровных) дыхание прекращается между —5 и —15°. У некоторых же насекомых Арктики дыхание обнаруживается еще при температуре в —26 и —38°. Среди растений только хвойные дышат при еще более низкой температуре.

В высокогорьях на вечных снегах встречается одноклеточная водоросль (Spherella nivalis), которая покрывает снег красными или зелеными налетами. Лучше всего она растет при +4° и может еще расти при —34°. Таким образом, организмы способны приспосабливаться к самым низким из имеющихся на Земле температурам.

В лабораторных условиях путем «воспитания» или «закаливания» удается еще более расширить температурные границы жизни. Особенно легко «перевоспитываются» одноклеточные организмы. В опытах профессора Ю. И. Полянского (Институт цитологии АН СССР) инфузории туфельки помещались в воду с температурой около 0°. Сначала они были в очень угнетенном состоянии, некоторые погибли, но другие постепенно «привыкли» и стали размножаться. Потомство таких «закаленных» туфелек оказалось способным переносить в переохлажденной воде температуру до —15° (до закаливания они выдерживали температуру лишь немного ниже 0°). Процессы закаливания хорошо изучены у растений и у некоторых животных. При этом удается «приучить» организмы к температурам более низким, чем бывает на Земле. Естественно допустить, что температурные условия гораздо более суровые, чем на нашей планете, не могут быть препятствием для жизни.