Допустив, что в одной хромосоме может размещаться больше чем один ген, следует поставить вопрос о том, а могут ли гены в гомологичной паре хромосом меняться местами, т. е. гены отцовской хромосомы перемещаться в материнскую и обратно.
Если бы такой процесс не происходил, то гены комбинировались бы только путем случайного расхождения гомологичных хромосом в мейозе. Следовательно, возможность обмена наследственной информацией между родительскими организмами ограничивалась бы лишь одними менделевскими закономерностями наследования.
Исследования Т. Моргана и его школы показали, что в гомологичной паре хромосом регулярно происходит обмен генами. Процесс обмена генами, или гомологичными участками гомологичных хромосом, называют кроссинговером, или перекрестом хромосом. Наличие такого механизма обмена генами между скрещивающимися организмами, т. е. процесс рекомбинации генов, расширяет возможности комбинативной изменчивости в эволюции.
При скрещивании двух организмов, различающихся по двум сцепленным генам AB/AB x ab/ab возникает гетерозиготная форма AB/ab.
В случае полного сцепления дигетерозигота даст только два сорта гамет: АВ и ab. При анализирующем скрещивании возникают два класса зигот AB/ab и ab/ab в отношении 1:1. Особи обоих классов воспроизводят признаки своих родителей. Данная картина напоминает моногибридное, а не дигибридное расщепление при анализирующем скрещивании.
Но наряду с явлением полного сцепления закономерно существует явление неполного сцепления. В случае неполного сцепления при скрещивании гетерозиготных особей генотипа AB/ab с рецессивной формой ab/ab в потомстве появляются не два, а четыре класса фенотипов и генотипов: AB/ab, ab/ab, Ab/ab, aB/ab. Эти классы по качественному составу напоминают расщепление при анализирующем скрещивании дигибрида, когда осуществляется свободное комбинирование генов. Однако числовое отношение классов при неполном сцеплении отлично от свободного комбинирования, дающего отношение 1 : 1 : 1 : 1. При неполном сцеплении возникают два новых класса зигот с иным, чем у родителей, сочетанием генов, а именно Ab/ab и aB/ab, которые всегда составляют менее 50%.
Образование новых классов зигот в расщеплении указывает на то, что в процессе гаметогенеза у форм, гетерозиготных по двум генам, образуются не только гаметы АВ и ab, но также Аb и аВ. Следовательно, гены, привнесенные в гибрид F1 одной хромосомой, в процессе образования у него гамет каким-то образом расходятся. Как могли появиться гаметы с таким новым сочетанием генов? Очевидно, что они могли возникнуть только в том случае, если между гомологичными хромосомами произошел обмен участками, т. е. кроссинговер. Кроссинговер обеспечивает новые сочетания генов, находящихся в гомологичных хромосомах. Явление кроссинговера так же, как и сцепление, оказалось общим для всех животных, растений и микроорганизмов.
Кроссинговер можно обнаружить лишь в том случае, если гены находятся в гетерозиготном состоянии, т.е. AB/ab.
При гомозиготном состоянии генов AB/AB и ab/ab перекреста хромосом выявить нельзя, так как обмен идентичными участками не дает новых комбинаций генов в гаметах и в потомстве. О перекресте хромосом можно судить на основе генетического анализа частоты возникающих рекомбинантов, т. е. зигот с новым сочетанием генов, и цитологических исследований поведения хромосом в мейозе.
Перекрест происходит в профазе I мейоза, и поэтому его называют мейотическим перекрестом. Но иногда перекрест происходит и во время митоза в соматических клетках, тогда его называют митотическим, или соматическим.
Мейотический перекрест осуществляется после того, как гомологичные хромосомы в зиготенной стадии профазы I соединяются в пары, образуя биваленты. В профазе I каждая хромосома представлена двумя сестринскими хроматидами, и перекрест происходит не между хромосомами, а между хроматидами. Выражение «перекрест хромосом» является обобщенным понятием, имея в виду, что кроссинговер происходит между хроматидами.