Выделение и качественный анализ гормонов производят многими методами.
Их подразделяют на четыре основные группы: биологические, химические, иммунологические и методы сатур анионного анализа. Классификация методов определения гормонов в значительной мере условна, так как многие из них являются комбинированными.
Биологические методы определения гормонов базируются на учете специфичности их влияния при тестировании на лабораторных животных или in vitro. Эффект действия гормонов оценивается по изменению массы органов, их гистологического строения, физиологических, биохимических и других показателей. Например, активность андрогенов определяют по изменениям массы гребня у кастрированных петухов, эстрогенов — по изменениям вагинального эпителия у овариоэктомированных мышей, прогестерона — по сохранению беременности у крольчих и т. п. Распространенным является метод суммарного определения действия гонадотропинов (ФСГ и ЛГ) по увеличению массы матки у неполовозрелых мышей. Применяют и другие методы, в которых учитывается увеличение массы яичников у неполовозрелых крыс, овуляция у крольчих и т. д. Определение гонадотропного гормона в СЖК осуществляют на самцах лягушек. Общую активность гонадотропина выражают в мышиных или крысиных единицах по минимальной дозе, которая вызывает на 50% увеличение матки инфантильных мышей или крыс, и сравнивают с международным стандартом. Согласно международному стандарту фоллитропную активность СЖК определяют по увеличению массы яичников у инфантильных крыс, а лютропную — по уменьшению количества аскорбиновой кислоты в яичниках.
Для учета эффекта действия тиротропина (ТТГ) применяют гравиметрический метод, основанный на определении изменения массы щитовидной железы. Более чувствительным является гистологический метод оценки по изменениям высоты клеток тиреоидного эпителия, размеров фолликулов и состояния коллоида. Биологическую активность пролактина определяют по увеличению зобной железы голубя и т. д.
Методы определения гормонов in vitro зачастую более чувствительны и экономичнее других биологических методов. Поэтому, в последние годы тестирование активности гормонов, особенно гормонов гипофиза и гипоталамуса, производится in vitro в биологических средах (тканях, гомогенатах, клеточных суспензиях), с последующим определением их содержания флюориметрическим или радиоиммунологическим методами.
Химические и физико-химические методы количественного анализа гормонов в биологических жидкостях и тканях получили широкое распространение. Большинство химических методов определения гормонов основано на использовании реакций, с помощью которых выявляют и учитывают особенности их химической структуры. Очень часто определение содержания гормонов возможно лишь после их предварительного извлечения и очистки, которые достигаются экстракцией, ультрацентрифугированием, хроматографией, осаждением белков и т. д. Для разделения смеси белковых гормонов часто применяют электрофорез в полиакриламидном геле. Под действием электрического поля заряженные молекулы гормонов перемещаются в геле. При этом поры геля выполняют функцию «молекулярного сита».
Эффективным методом очистки белковых и пептидных гормонов является ионно-обменная хроматография с применением специальных смол и других компонентов. Для разделения катехоламинов и стероидных гормонов применяют адсорбционную (молекулярную) колоночную хроматографию. Чаще всего в различных методах хроматографии используют растворители с определенной полярностью, которые под действием капиллярных сил обеспечивают перемещение в слое сорбента исследуемых гормонов. В последние годы для количественного анализа стероидных гормонов применяют газожидкостную хроматографию. Через колонку газового хроматографа, заполненную гранулами адсорбента с растворителем, с помощью газа-носителя (аргон, водород, азот) продувают нагретую в испарительной камере исследуемую смесь. Выход гормонов из колонки в потоке газа регистрируется детектором. Для газо-жидкостной хроматохрафии требуется предварительная очистка экстрактов стероидов и их разделение с помощью тонкослойной и других видов хроматографии.
Значительная часть химических методов основана на применении колориметрического и флюоресцентного анализов, которые особенно широко используются для определения содержания стероидов. Поглощение света растворами исследуемых гормонов находится в прямой зависимости от их концентрации. Чувствительность флюориметрических методов определения гормонов в 10—20 раз выше чувствительности спектрофотометрии. В последние годы химические и биологические методы определения гормонов частично вытесняются радиоиммунологическими методами, которые оказались менее громоздкими, более чувствительными и специфичными.
Иммунологические методы основаны на способности белковых и полипептидных гормонов индуцировать выработку антител при гетероиммунизации. Для иммунологического тестирования гормонов применяют реакции связывания комплемента, преципитации и торможения пассивной гемагглютинации. В связи с наличием иммунологической специфичности белковых гормонов иммунологические методы, разработанные для гормонов одного вида животных, как правило, не могут использоваться для определения тех же гормонов у других видов животных.
В основе методов сатурационного или радиолигандного анализа лежит конкурентное взаимодействие молекул гормона и специфических антител или другого связывающего белка. При введении в систему для тестирования меченого лиганда — гормона, маркированного радиоактивным изотопом или конъюгированного с каким-либо ферментом, происходит насыщение (сатурация) связывающего белка. При последующем добавлении немеченного гормона (антигена) часть молекул лиганда вытесняется из комплекса с белком. Содержание исследуемого гормона методами сатурационного анализа определяют по калибровочной кривой для различных концентраций стандарта. В методах сатурационного анализа используют специфические белки, обладающие высоким сродством к соответствующим гормонам. С учетом применения специфических белков (антитела, рецепторные белки тканей, транспортные белки плазмы крови) различают следующие методы: радиоиммунологические (ферментноиммунологические), радиолигандно-рецепторные (радиорецепторные) и конкурентного связывания с белками плазмы.
Чувствительность иммунологических методов при применении специфических антител к гормону, меченных радиоактивным изотопом, значительно увеличивается. В связи с этим их выделяют в отдельную группу и называют радиоиммунологическими. Эти методы основаны на свойствах немеченного антигена вытеснять меченный антиген из соответствующего комплекса антиген — антитело. В последние годы, в основном в медицине, радиоиммунологические методы широко применяются для определения инсулина, глюкагона, соматотропина, гонадотропинов (ФСГ, ЛГ) и других гормонов.
Для анализа белковых гормонов перспективен ферментноиммунологический метод. В сравнении с радиоиммунологическим он имеет преимущества, так как в данном случае не требуются радиоактивные изотопы, а гормоны, меченные ферментами, имеют более высокую устойчивость при хранении. Применяемые меченные йодом-125 гормоны можно использовать только в течение 20 дней, с условием их хранения при температуре —20° С, а меченные ферментами гормоны при стерильном приготовлении не теряют активности в течение 6 мес. Ферментоиммунологический метод в настоящее время успешно применяется для определения гипофизарных гормонов в крови молодняка крупного рогатого скота.
В последние годы получили применение радиорецепторные методы, которые дают возможность определить содержание активной части гормонов, в то время как радиоиммунологическими методами определяют только их общее содержание. Клеточные рецепторы приготовляют из матки кроликов, крыс или овец — для определения эстрогенов, из молочной железы кроликов — для определения ЛТГ и СТГ и т. д. Радиорецепторные методы разработаны и используются для определения эстрогенов, АКТГ, пролактина и других гормонов.
Методы конкурентного связывания с белками плазмы базируются на избирательном сродстве их с соответствующими гормонами и широко применяются для определения количества стероидных и тиреоидных гормонов.
В настоящее время разработаны и широко применяются высокоэффективные радиобиологические методы определения ТТГ-активности, основанные на измерении накопления и выделения радиоактивного йода в щитовидной железе после введения ТТГ и измерении радиоактивности крови и ее сыворотки. Концентрация ТТГ определяется в нанограммах в I мл сыворотки (нг/мл). Для функциональной характеристики щитовидной железы определяется количество свободного тироксина и трийодтиронина в сыворотке крови с помощью радиоиммунологических и других методов. Однако в связи с их трудоемкостью часто используют метод определения в сыворотке (плазме) связанного с белком йода (СБИ), так как основная часть СБИ сыворотки крови принадлежит тиреоидным гормонам. Для определения активности щитовидной железы применяют также пробы поглощения индикаторных доз радиоактивного йода.
Важным условием оценки методов определения гормонов является адекватность их показателей с фактическим содержанием гормонов в организме. Определение содержания белковых, полипептидных гормонов и производных аминокислот в гипофизе, щитовидной и других железах должно осуществляться с учетом концентрации гормонов в инкретирующих органах и в крови, так как синтез, депонирование и инкреция упомянутых гормонов регулируются разными механизмами. Синтезирующиеся в надпочечниках и гонадах стероидные гормоны не депонируются, содержание этих гормонов в железах адекватно отражает их биосинтез и инкрецию. Методы прямого определения гормонообразования в соответствующих органах имеют преимущества, однако для исследований чаще применяют более доступные косвенные методы определения гормонов и их метаболитов в крови и моче.
Для более полной характеристики функциональной деятельности эндокринных желез, некоторые авторы рекомендуют применять комплексную оценку с учетом их функциональной активности, состояния механизмов регуляции и интенсивности инактивации и выделения гормонов из организма. Гормональный статус у сельскохозяйственных животных необходимо определять с учетом их вида, породы, типов конституции, продуктивности, возраста, пола, условий кормления и содержания. Это важно для более эффективного применения гормонов и их аналогов в различных областях животноводства и ветеринарии.