Факультет

Студентам

Посетителям

Раневой стресс растений

Трудно, пожалуй, найти другой научный термин, который так прочно вошел бы в жизнь современного общества, как стресс.

Впервые этот термин ввел известный канадский физиолог Ганс Селье в 1936 г. для объяснения реакции организма на самые различные невзгоды, для преодоления которых требуется напряжение всех его сил.

Согласно определению самого Селье, стресс представляет собой совокупность всех неспецифических изменений, возникающих под влиянием любых сильных воздействий, и сопровождается перестройкой защитных сил организма. Уже из определения следует, что неспецифические реакции имеют прямое отношение к иммунитету против инфекционных болезней, хотя в целом иммунитет рассматривается как проблема специфичности. Ведь что может быть более специфичным, чем реакция антиген—антитело. И все же очень большую роль, особенно в иммунитете растений, играют неспецифические реакции. Более того, они в ряде случаев могут определить исход взаимоотношений между хозяином и паразитом. К тому же изучение неспецифических реакций может приблизить нас к пониманию специфических и, следовательно, к проблеме иммунитета в целом.

К числу самых распространенных неспецифических защитных реакций, по крайней мере в растительном мире, относится реакция на механические поранения, которые неизбежны при ветре, граде и других неблагоприятных условиях. Такого рода реакции, несомненно, возникли еще до появления паразитов, и можно думать, что они в какой-то мере явились основой для развития у растений защитных реакций против паразитов. Ведь многие паразиты способны проникать в растительную ткань только лишь после того, как механически ее повредят.

Реакцию растений на механическое повреждение часто называют еще процессами репарации, залечивания, заживления, образования раневой перидермы. Особенно хорошо исследована раневая реакция клубней картофеля, которые являются излюбленным объектом для проведения такого рода работ. Неповрежденный клубень покрыт так называемой естественной перидермой, точной копией которой является раневая перидерма, которая образуется на пораненном участке. Естественная перидерма защищает клубни от неблагоприятных воздействий и излишнего испарения.

Под микроскопом видно, что естественная перидерма представляет собой многослойные ряды уплощенных клеток, расположенных одна под другой. Оболочки таких клеток содержат особое вещество типа пробки, носящее название суберина. Суберин адкрустирует клеточную оболочку, накладываясь на нее изнутри. Под электронным микроскопом суберинизация клеточных стенок выглядит слоистой из-за чередования слоев суберина и воска.

Суберин представляет собой полимер оксимонооксиди — и дикарбоновых кислот. В составе его находятся также некоторые полициклические вещества терпеновой природы. Вещества, входящие в состав пробки, делают ее высокоустойчивой к влиянию множества химических воздействий, таких, как органические кислоты, разбавленная соляная кислота, слабые щелочи. Наличие суберина в составе покровных тканей усиливает их механические свойства, поскольку большинство микроорганизмов не содержит ферментов, расщепляющих эти полимеры.

В процессе суберинизации происходит закупоривание пор в клеточных оболочках, в результате чего прерываются межклеточные контакты. Содержимое клеток, оболочки которых пропитываются суберином, постепенно отмирает, их полости наполняются воздухом, в результате чего клетки становятся термо — и влагонепроницаемыми.

В ответ на механическое поранение растения отвечают защитной раневой реакцией, суть которой сводится к образованию на пораненном участке точно такой же перидермы, какой является естественная. В результате поранения нарушается структурная и функциональная целостность растения или отделенного от него органа. В ответ на нарушение включаются системы иммунологического контроля, имеющие целью ликвидировать повреждение и восстановить нарушенную целостность. Образующаяся на месте поранения раневая перидерма по своим структурным и функциональным характеристикам ничем не отличается от естественной. Ее образование имеет целью как можно скорее закрыть ворота в кладовые растительных тканей, которые оказались открытыми в результате поранения. Неспособность растительных тканей быстро реагировать на повреждение может оказаться гибельной для организма в целом.

Как же происходит образование раневой перидермы? Взрослые клетки, давно прекратившие клеточные деления и находящиеся на поверхности поранения или залегающие непосредственно под ним, вновь приобретают меристематическую активность (способность к делению). Клетки обычно делятся параллельно пораненной поверхности, в них закладывается феллоген или пробковый камбий. Феллоген начинает делиться, отделяя наружу себе подобные по форме клетки, которые называются феллемой. В большинстве случаев это мертвые клетки, оболочки которых пропитаны суберином. Внутрь клубня феллоген также отпочковывает часть клеток такой же формы, которые остаются живыми и носят название феллодермы. Весь перидермальный комплекс состоит из приблизительно одинаковых расположенных друг под другом клеток феллемы, феллогена и феллодермы.

Для того чтобы взрослые клетки на поверхности поранения приобрели меристематическую активность, они должны получить стимул к делению или раневому возбуждению. Вокруг природы этого стимула развернулась длительная дискуссия. Существование раневого гормона предсказал еще 60 лет тому назад Г. Габерланд на основании своих опытов. На разрезанной поверхности кольраби, как и на клубне картофеля, образовывалась раневая перидерма. В том случае, если поверхность ломтика промывалась водой, образование перидермы задерживалось. Если же на предварительно промытую поверхность наносили кашицу из растертых тканей, перидерма вновь начинала образовываться. Это позволило Габерланду прийти к заключению, что из продуктов отмерших и разрушенных клеток образуются вещества, вызывающие раневое возбуждение. Он назвал их раневыми гормонами или некрогормонами.

Вещество, получившее название раневого гормона, было выделено в конце 30-х годов Д. Инглишем и Д. Боннером. Им оказалась Δ-децен-1,10-дикарбоновая кислота, получившая название травматиновой кислоты, или травматина. Это вещество было обнаружено в картофеле, брюссельской капусте, люцерне, рисе, томатах, апельсинах и других растениях, но отсутствовало в тканях животных. В качестве раневого гормона испытывались также иные кислоты жирного ряда. Выяснилось, что активность коррелировала с присутствием двойной связи в молекуле и возрастала при увеличении числа углеродных атомов.

В самое последнее время другое вещество, напоминающее по своим свойствам раневой гормон, было обнаружено у ряда растений. Под влиянием различных стрессовых воздействий, в том числе и поранения, это вещество освобождалось из клеточных стенок растений, быстро передавалось по проводящей системе и индуцировало в здоровых тканях, удаленных от места повреждения, образование ингибиторов протеиназ, т. е. веществ, подавляющих ферментные системы, расщепляющие белки. Растения, таким образом, как бы заранее готовятся отражать атаку ферментов паразитарного микроорганизма, который может проникнуть через места механических поранений. Поскольку образующийся сигнал принадлежит самому растению, а не вводится паразитом, он подходит под определение раневой гормон. По предварительным данным, вещество представляет собой рамногалактуронан.

Вещество широко распространено в растительном мире. Если экстракты из 37 видов растений наносили на молодые листья томатов, то они индуцировали в них накопление ингибиторов протеиназ. Только два вида экстрактов из сельдерея и кабачка не вызвали их накопления.

Еще 40 лет назад А. Л. Курсанов установил, что процесс раневого залечивания сопровождается возрастанием дыхания. Субстратом возросшего дыхания в залечивающихся клубнях картофеля являлся крахмал, количество которого в тканях, прилегающих к месту поранения, постепенно уменьшалось, взамен чего возрастали моносахара, сгорающие в акте дыхания.

Процессы репарации нуждаются в источниках энергии. Показано, что в зоне поранения возрастало число митохондрий. Дополнительно образованные митохондрии генерировали энергию с такой же скоростью, как и предсуществующие в свеженарезанных клубнях. Очевидно, энергия, необходимая растениям для залечивания поранений, реализуется за счет дополнительно образовавшихся митохондрий.

В ответ на механическое поранение в клубнях картофеля происходило также образование нуклеиновых кислот. Показано, например, что через 10 минут после разрезания в бобе гороха в 10 раз возрастало количество рибонуклеиновой кислоты. В зоне поранения увеличивалось также и содержание аскорбиновой кислоты. К примеру, в раневой зоне клубня картофеля содержание аскорбиновой кислоты в 4—5 раз выше, чем ее количество в интактных клубнях.

Неоднократно предпринимались попытки установить корреляцию между устойчивостью клубней картофеля и толщиной их покровов. В конце концов исследователи вынуждены были признать, что такой зависимости не существует. Не обнаружено связи и между способностью клубней картофеля образовывать раневую перидерму и ее устойчивостью к ряду паразитарных микроорганизмов. По-видимому, образование перидермы на поверхности поранения клубней картофеля является второстепенным фактором в устойчивости клубней к ряду фитопатогенов, поскольку для ее образования требуется время, в течение которого паразит может проникнуть в клубень. Однако уже сформированная раневая перидерма вполне способна надежно защитить клубни от проникновения инфекции.

Еще сравнительно недавно считалось, что защитная роль перидермы по отношению к фитопатогенным микроорганизмам определяется только ее механическими свойствами. Позднее стало ясным, что перидерма является не только механическим, но и токсикологическим барьером на пути проникновения инфекции. Дело в том, что в зоне поранения накапливаются антибиотические вещества, которые подавляют проникновение инфекции. Эти вещества различной химической природы и, следовательно, обладают различным механизмом действия. Такие антибиотические вещества присутствуют как в составе раневой, так и естественной перидермы. Они как бы защитным чехлом покрывают растение и его органы снаружи. Вот, например, как располагаются ингибиторы в составе перидермы клубня картофеля: в наружных отмерших клетках феллемы находятся некоторые фенольные соединения, в том числе кофейная кислота. Под ними в меристематической ткани залегают высокотоксические гликоалкалоиды, а еще ниже располагается хлорогеновая кислота. Таким образом, проникающему паразиту, помимо механических покровов, приходится преодолевать несколько последовательно расположенных токсических барьеров из ингибиторов различной химической природы с различными спектрами антибиотического действия. К тому же расположение ингибитора в отмерших тканях наружных растительных покровов позволяет создать их чрезвычайно высокие локальные концентрации.