В гетевские времена, как вспоминал сам Гете, в Карлсбаде — на карте не ищите, теперь это Карлови Вари — на водах отдыхающие любили определять в букетах растения по Линнею. Эти букеты пьющим в тени колоннады минеральные воды (гидрокарбонатно-сульфатно-хлоридно-натриевые — к сведению собирающихся в Karlovy Vary) доставлял ежедневно молодой красивый садовник, вызывающий у бледных одиноких дам повышенный интерес.
Правильное определение каждого растеньица было делом чести и успеха у садовника, поощрявшего за скромную плату невинные ботанические увлечения. Трудно сказать почему — из-за ревности ли к садовнику, или к Линнею, но поэт жестко разошелся с Линнеем в принципах систематики растений. Линней, как известно, искал в растениях различия, Гете же стал искать общее и этим, надо сказать, сделал первый шаг к генетической систематизации растений.
Увлечение женщин ботаникой можно было понять: система Линнея была до изумления проста и понятна. Это вам не «Определитель высших растений европейской части СССР» Станкова-Талиева более чем в тысячу страниц, приводящий студентов в предынфарктное состояние.
Линней, сроду не любивший арифметики, тем не менее заложил ее, можно сказать, в основу своей системы. Он подразделил растения на 24 класса, из которых 13 выделены по числу тычинок. Растения с одной тычинкой в каждом цветке помещены в первый класс, с двумя — во второй и так далее до десятого класса, к которому отнесены растения с десятью тычинками. Класс 11-й включал растения с 11—20 тычинками, 20 и более тычинок в цветке говорило о принадлежности к 12-му и 13-му классу. Эти два класса различали по уровню расположения основания тычинок относительно места прикрепления пестика. Растения 14-го и 15-го классов имеют тычинки неравной длины. В цветах классов 15—20-го тычинки у растений сращены между собой или с пестиком. В 21-й класс были помещены однодомные растения, имеющие частью тычиночные, частью плодущие (пестичные) цветки. В 22-й класс попали двудомные растения, развивающие на одних растениях лишь тычиночные, на других — только плодущие цветки. Класс 23-й включал растения с хаотичным разбросом мужских и женских цветков (в том числе порою и совместном) на растении. В 24-м классе были объединены «тайнобрачные» растения — все бесцветковые растения, начиная с папоротникообразных и кончая водорослями. Названы последние «тайнобрачными» по той причине, что ботаники не знали, как они размножаются. Это сейчас биологам известны их организация и размножение лучше, чем цветковых растений.
Линней отнес 20 из 23 классов к явнобрачным обоеполым цветкам. Именно их он посчитал правилом в растительном царстве, остальные — любопытным исключением. Оно вроде бы логично, для растений удобнее — тычинки и пестики рядом, значит, брак без заминки; итог любви — плод и семя появляются в результате самоопыления, зашифрованного биологами латинским словом autogamia.
Уже после Линнея выяснилось, что некоторые растения имеют лишь с виду обоеполые цветки. Хотя у них в цветках рядом и тычинки, и пестики, но пыльцевые клетки в пыльниках недоразвиты и все растение евнух евнухом — смотреть противно. Другие цветки сами себя не могут оплодотворить, но их пыльца способна к производству потомства при опылении пестиков чужих растений.
Поскольку повелось исстари у ботаников все называть латинскими именами, то совокупность тычинок цветка они наименовали андроцеем, а совокупность пестиков (или просто пестик) — гинецеем. Но так как ни один ученый на уже достигнутом однажды ни за что не остановится, то ботаники в дальнейшем в зависимости от строения цветков подразделили их на обоеполые (содержат андроцей и гинецей) и однополые (содержат либо андроцей, либо гинецей). Если мужские и женские цветки расцветают на одном растении, его называют однодомным (кукуруза), если же на разных — двудомным (конопля). У полигамных видов на одном растении бывают обоеполые и однополые цветки (дыня, подсолнечник). Однако, по-видимому, в пику ученым-ботаникам природа порой подставляет их пытливому оку все формы перехода от одного полового типа цветка и растений к другому, вплоть до пустоцветов, вовсе лишенных тычинок и с недоразвитыми пестиками.
Чрезвычайно раздражающее огородников сорное растение мокрица, или топтун, имеет в двух пятичленных мутовках десять тычинок, из которых обыкновенно 5 внутренних с некоторым добавлением таковых же из внешней мутовки сморщены и лишены пыльцы. Цветковые головки черноголовника (Poterium polygamum) содержат кроме чисто плодущих и чисто тычиночных цветков еще и настоящие обоеполые цветки. Они представляют все примеры перехода от настоящих обоеполых к цветкам чисто материнского типа. Кстати, этот ботанический род исключителен среди розоцветных своей склонностью к ветроопылению.
Необычайно разнообразны также степени обособления среди ложнообоеполых плодовитых и тычиночных цветков. Бодяк, спаржа, хурма, виноград, некоторые скабиозы, камнеломки, валерьяны имеют цветки на первый взгляд обоеполые. В них хорошо развиты пестики, видны и тычинки, в пыльниках которых может быть или отсутствовать пыльца. В последнем случае это ложнообоеполые цветки. Что делать, и в природе «лжедмитрии» встречаются. То же самое можно сказать и о части цветков в кистях конских каштанов и некоторых видов щавеля, а также в цветках в центре корзинок мать-и-мачехи и ноготков, имеющих вид настоящих обоеполых цветков, но чьи завязи не дают всхожих семян, так как рыльце не способно пропускать через себя пыльцевые трубки.
В кистях явора (один из видов клена) можно заметить все возможные переходы от ложнообоеполых тычиночных цветков с хорошо развитыми крупными завязями к таким, в которых пестики недоразвиты или совершенно отсутствуют. Переходы от настоящих обоеполых цветков к пустоцветам можно встретить у нескольких видов степного гиацинта.
Известны также трехдомные виды: у них одни растения несут только мужские, другие — только женские, а третьи — обоеполые цветки (смолевка). Из курьезов растений можно отметить смену пола с возрастом или в отдельные годы. Виноград сердцевидный, относящийся на своей родине к типично двудомным, в Венском ботаническом саду представлен кустами с тычиночными цветками. Но в некоторые годы виноградные кусты приводят экскурсоводов в замешательство, поскольку образуют кроме тычиночных настоящие обоеполые цветки.
У многих растений самооплодотворению препятствует неодновременное созревание тычинок и пестиков в цветке — дихогамия (подсолнечник, малина, груша, яблоня, слива), при которой различают протерандрию, когда тычинки пылят раньше созревания пестиков, и протогинию, когда пестики созревают раньше тычинок.
Главным образом протерандричны сложноцветные, губоцветные, мальвовые, гвоздичные и бобовые; протерогиничны ситники и ожики, кирказоновые и дафниевые, жимолостные, глобуляриевые, пасленовые, розоцветные и крестоцветные. Протерогиничны все однодомные растения: осоки, рогозы, ежеголовники, ароидные с однодомными цветками, кукуруза, однодомная крапива жгучая, уруть, черноголовник, дурнишник, бешеный огурец, молочайные растения, ольха, береза, грецкий орех, платан, вяз, дуб, орешник, бук. У названных здесь деревьев и кустарников пыльники начинают пылить с опозданием в 2—3 дня. У альпийской зеленой ольхи эта разница равна 4—5 дням, а у мелкого рогоза — даже девяти.
Большей частью протерогиничны двудомные растения. В больших ивовых зарослях по не травленным химией берегам наших рек некоторые виды все еще представлены многочисленными кустарниками. Часть их несет тычиночные цветки, другая — пестичные. Они практически находятся в одних условиях, но, несмотря на одинаковые внешние условия в одной и той же местности, кусты с пестичными цветками всегда ловко опережают в цветении своих «мужчин» с тычиночными цветками. У белотала, пурпурного лозника, корзиночной вербы и ракиты рыльца в своем созревании на 2—3 дня опережают вскрытие тычиночных цветков. То же самое у альпийских ив — убедитесь, если доведется побывать в Альпах. Но тут разница во времени ограничена всего лишь одним днем, из чего правомерно заключить, что наши ивы — самые протерогиничные ивы в мире.
У растений конопли, растущих рядом, в начале цветения можно заметить рыльца, готовые к восприятию пыльцы, хотя ни единый тычиночный цветок еще не раскрыт — они раскроются лишь через 4—5 дней. У пролески, или кур-зелья, растущей по лиственным лесам и кустарникам, рядом расположены материнские и отцовские особи. Тем не менее пестичные цветки у них открываются за два дня до тычиночных. То же у хмеля и многих других двудомных растений.
У немногих растений самооплодотворение затруднено из-за такого расположения тычинок и пестиков, при котором пыльце трудно попасть на рыльце пестика своего цветка. Например, при гетеростилии одни особи имеют цветки с длинными пестиками и короткими тычинками, а другие — наоборот. К гетеростильным (разностолбчатым) относятся некоторые горечавковые (например, вахта, или трилистник), гречиха, различные виды ленца, многочисленные первоцветные (к примеру, проломник, турча, примула, или первоцвет), а также многие бурачниковые (незабудки, медуница и др).
Вахта обладает очень изящными мохнатыми белорозовыми цветками-звездочками, собранными кистью на безлистном стебле. Одни цветки обладают низким столбиком и укрепленным над ним пыльником, другие, напротив, — высокими столбиками и укрепленными под ними пыльниками. Рыльца у растения созревают раньше тычинок. Насекомые, посещающие цветки вахты, касаются одной и той же частью своего тела то пестиков, то тычинок, осуществляя строго перекрестное опыление. Однако в долгое ненастье цветок закрыт и вынужден самооплодотворяться.
Примула, среди детей более известная как баранчики, распускает цветки одной из первых среди весенних цветов. Отсюда и латинское название primus — первый. Опыляют растение только шмели и бабочки. Благодаря разностолбчатости пестики одних цветков могут быть опылены пыльцой только с других цветков. Если шмель садится на цветок с низким пестиком, он касается головой высокостоящих тычинок. Перелетая на цветок с высокостоящим пестиком, он касается головой рыльца и производит перекрестное опыление.
Явление разностолбчатости впервые было открыто на цветках турчи болотной, а потом и на других растениях. Первенство турчи в этом отношении кажется даже невероятным, если учесть, что все растение погружено в воду, и только в июле цветки появляются над водой. Другая примечательность турчи в том, что корней она не имеет, и всасывающие функции у нее исполняют клетки кожицы листьев.
У гречихи, по клятвенному заверению генетиков, длинностолбчатость контролируется рецессивной аллелью s, а короткостолбчатость — доминантной аллелью S (напоминаем, что аллель — одна из форм coстояния одного и того же гена). Поскольку опыления в пределах одного типа цветка не происходит, то в популяциях все время поддерживается равное соотношение растений с генотипами Ss и ss; это видно из решетки Пеннета, известной из школьного курса биологии:
s |
S |
s |
s |
Ss |
ss |
s |
Ss |
ss |
то есть расщепление 1:1, как и у человека, на мальчиков (АТ) и девочек (XX) в потомстве.
По строению цветка гречиха приспособлена к перекрестному опылению преимущественно насекомыми (мухами, шмелями и особенно пчелами), которых привлекает нектар, и лишь отчасти — ветром. При нормальном (легитимном) опылении, когда пыльца коротких тычинок попадает на рыльца коротких столбиков и, соответственно, пыльца длинных тычинок — на рыльца длинных столбиков, завязывается наибольшее количество семян.
Плакун-трава (Lythrum salicaria) — одно из самых интересных наших растений. Дело в том, что цветки плакун-травы имеют пестики трех различных величин и 12 тычинок, расположенных поровну в два круга. В одних цветках пестик выше обоих кругов тычинок, в других — он находится между ними и в третьих — ниже обоих кругов. Следовательно, тычинки располагаются на различных высотах так же, как и пестики, что обеспечивает перекрестное опыление. Насекомое, прилетая за нектаром, вымазывается пыльцой и отдает ее на рыльце пестика, по длине соответствующего тычинке, с которой снята пыльца. Оплодотворение происходит нормально, когда пыльца переносится с тычинки, одинаковой по длине с пестиком. Зерна пыльцы с тычинок трех различных высот разнятся между собой по величине и отчасти по цвету, а соответственно этому длина сосочков на рыльцах трех различных высот также различная, — ведь рыльца должны улавливать разную пыльцу. Процесс опыления в деталях впервые исследован Ч. Дарвином.
У некоторых растений тычинки и пестики расположены в строгой очередности, подставляясь насекомым для «разгрузки» пыльцы или «погрузки» рыльца. У нашей руты обыкновенной, встречаемой на склонах и холмах в лесах Южного Крыма, цветок содержит десять пыльников, поддерживаемых прямыми, расположенными звездой нитями. Сначала поднимается одна нить, устраивая поддерживаемый ею пыльник в середине цветка по линии, ведущей к нектару, который выделяется мясистым кольцом у основания пестика. Она сохраняет такое положение около суток, затем возвращается в прежнее положение. В то время как первая тычинка отгибается, поднимается другая — и все повторяется. Это продолжается, пока все десять пыльников, один за другим, не постоят в середине цветка. Когда, наконец, и десятая тычинка отогнется назад, в центре цветка оказывается рыльце, ставшее в это время восприимчивым к опылению.
В обоеполых цветках постенницы из семейства крапивных рыльце развивается еще до распускания цветка и первым выдается из зеленоватого бутона цветка. Пыльники на согнутых ножках, словно на пружинах, закрыты смыкающимися мелкими зеленоватыми покроволистиками. Но прежде чем они позволят пыльникам подняться с «колен», выпрямиться и рассеять свою пыльцу в виде облачка в воздухе, рыльце вянет и столбик отделяется вместе с рыльцем от завязи. Так что ко времени освобождения пыльцы из пыльников завязь оканчивается острием — засохшим основанием отпавшего столбика.
Обычно у растений все это происходит иначе: сначала в цветке опадают пыльники и тычинки, и лишь после этого рыльце приобретает способность воспринимать пыльцу. В цветках бальзамина пыльники срощены между собой и образуют нечто вроде колпачка над рыльцем. После того как цветок раскрылся и сделался доступным прилетающим насекомым, пыльники тотчас растрескиваются, и перед нами предстает образованный вскрывшимися пыльниками колпачок. Но вот нити тычинок отделяются, и колпачок вываливается из цветка. Лишь теперь показываются рыльца, вполне уже созревшие. То же можно наблюдать у крупноцветковых видов журавельника и герани.
В обоеполых цветках традесканции, разводимой дома и по недоразумению называемой «бабьими сплетнями», пыльники вскрываются чуть раньше, чем рыльца станут восприимчивыми к пыльце. Но как только рыльце готово к опылению, тычинки свертываются в спираль, а вскоре за этим увядают покроволистики, покрывающие собой пыльники на свернувшихся нитях. Столбик же выдается, и рыльца восприимчивы к пыльце еще весь следующий день. Эти цветки навещают насекомые с короткими хоботками, чтобы полакомиться соком смятых покроволистиков, скрывающих тычинки, при этом они касаются рылец и опыляют их пыльцой, принесенной с других цветков. Опыление же пыльцой своих пыльников уже невозможно.
Дихогамии ботаники, опирающиеся в своих изысканиях лишь на морфоэкологические различия, без учета содержания геномов, обязаны изобилию видов осок, бесконечно вновь открываемых, а то и переоткрываемых. Тем более что так называемые «виды» осок легко скрещиваются друг с другом, выдавая множество промежуточных форм, охотно принимаемые за новые «виды» (авторов видов привлекает возможность увековечить свое имя в латинской транскрипции). Несовершенная (неполная) дихогамия у ботанических родов с однодомными цветками обеспечивает, например, у осок вначале так называемое межвидовое, а позднее внутривидовое скрещивание. Это понятно, так как рыльце самого первого расцветающего растения протерогиничного вида может быть опылено только пыльцой других, еще раньше зацветших «видов».
Лысенко считал, что «диалектический материализм, развитый и поднятый на новую высоту трудами товарища Сталина, для советских биологов, для мичуринцев является самым ценным, наиболее мощным теоретическим оружием в решении глубоких вопросов биологии, в том числе и вопроса о происхождении одних видов из других». Потому и дано им сверхдиалектическое определение вида на этой новой высоте: «Вид — это особенное, качественно определённое состояние живых форм материи. Существенной характерной чертой видов растений, животных и микроорганизмов являются определённые внутривидовые взаимоотношения между индивидуумами». Вот так-то.
Не все ботаники желают видеть, что в диалектическом единстве формы и содержания определяющим является содержание. Содержание же вида — это единство генетического строения популяций, его составляющих. Внешне оно проявляется в фенотипическом сходстве, свободной скрещиваемости, особенно же в способности давать плодовитое потомство при скрещивании. Наследственная информация — вот то, что качественно определяет вид и составляет его содержание. Трудно сказать, возникла ли жизнь одновременно с наследственностью (подозреваю, что одновременно), но одно не вызывает сомнений: с появлением дискретной наследственности на земном шаре появились виды.
С учетом известных науке формулировок определение вида может быть таким: вид — качественно обособленное на данном этапе эволюционного процесса, сложное и подвижное сообщество организмов, характеризующееся единством происхождения, общностью генетической конституции, наследственной устойчивостью и плодовитостью потомства. Большинство выделенных «видов» осок и ив этому определению не соответствуют.
При выделении «хороших», или настоящих, видов по скрещиваемости и образованию плодовитого потомства нельзя забывать о явлении самонесовместимости — невозможности самооплодотворения у некоторых гермафродитных организмов или перекрестного оплодотворения между особями вида с одинаковыми генетическими факторами несовместимости. Основная функция систем самонесовместимости — предотвращение самооплодотворения и содействие скрещиванию между неродственными особями.
Различают гаметофитную, спорофитную и гетероморфную самонесовместимость. Гаметофитная самонесовместимость — самая распространенная (злаковые, свекла, люцерна, плодовые, картофель и др.). Эта система характеризуется независимым действием в пыльце и столбике двух аллелей локуса несовместимости S. присутствующего в каждой особи. Например, пыльца растения с генотипом S1S2 ведет себя как S1 или S2 в зависимости от того, какую аллель содержит пыльцевое зерно. Ни одна из аллелей не проявляет доминирования или иной формы межаллельного взаимодействия. Такая же полная независимость действия наблюдается и в столбике.
Реакция несовместимости проявляется в столбике пестика: рост пыльцевых трубок, несущих данную аллель, прекращается в столбиках, содержащих идентичную аллель. Если все аллели, участвующие в гибридизации, различны, например S1S2XS3S4, то все пыльцевые трубки совместимы, завязь получается нормальной и в потомстве образуются 4 перекрестно совместимых генотипа. У огромного большинства изученных видов гаметофитной несовместимостью управляют один-два локуса.
Спорофитная несовместимость впервые была описана у гваюлы. При спорофитной самонесовместимости поведение каждого пыльцевого зерна зависит от генотипа столбика. Так, если S1 доминирует над S2, вся пыльца растения S1S2 будет реагировать как S1 и сможет проникать в столбики, несущие аллель S2, независимо от генотипа пыльцевой трубки — S1 или S2.
Гетероморфная несовместимость возникает на основе гетеростилии, уже описанной нами ранее.
Одним из приспособлений растения для осуществления перекрестного оплодотворения служит мужская стерильность. В последние десятилетия мужская стерильность у культурных растений вызывает у селекционеров и семеноводов огромный интерес, так как позволяет в широких масштабах получать гетерозисные гибриды первого поколения, которые дают прибавки урожая до 40 процентов по отношению к обычным сортам, отличаются ранним и дружным созреванием, высокой выравненностью и устойчивостью к неблагоприятным факторам среды.
К настоящему времени описаны цитоплазматическая мужская стерильность (ЦМС) и генная мужская стерильность (ГМС), контролируемая генами ядра клетки. Цитоплазматическая мужская стерильность у растений обусловлена взаимодействием стерильной цитоплазмы (S) с 1—3 парами рецессивных генов ядра (rf). В присутствии доминантных генов ядра (RF) восстанавливается фертильность пыльцы. ЦМС широко используется для получения гетерозисных гибридов в промышленных масштабах у кукурузы, сорго, Сахарной свеклы, лука, моркови. Как правило,
для использования ЦМС в семеноводстве гибридов первого поколения (они обозначаются F1) используют фертильные закрепители стерильности с генотипом Nrfrf (N — нормальная цитоплазма), их стерильные аналоги — Srfrf и восстановители фертильности — RfRf.
Генная мужская стерильность используется для получения гетерозисных семян у томатов, перца, ячменя. При производстве гибридных семян на основе одного рецессивного гена ГМС расщепление в Fi идет по Менделю в соотношении 3 фертильных : 1 стерильное растение, поскольку, в отличие от ЦМС, мужская стерильность передается как через женские, так и через мужские гаметы.
Скрещивания, как известно, широко применяются в селекции и семеноводстве растений. Возможность искусственного получения гибридов впервые предположил немецкий ученый Р. Камерариус в 1694 году, и, как это часто бывает, ему никто не поверил. Только в 1760 году немецкий ботаник и почетный член Петербургской академии наук Йозеф Кёльрёйтер получил гибрид перуанского табака метельчатого с махоркой. С этого года ученые начинают сознательную гибридизацию.
В зависимости от степени родства скрещиваемых форм различают внутривидовую и отдаленную — межвидовую и межродовую гибридизацию. Если в скрещивании участвуют две родительские формы, говорят о простой, или парной, гибридизации, если более двух — о сложной. Различают прямые (A×B) и обратные (В×А) скрещивания, носящие в целом название реципрокных. Скрещивание гибридов с одним из родителей, например (A×B)×A или (А×В)×В, называют беккроссом, или возвратным.
Для обозначения гибридов и родительских форм используют символы: Р — родительская форма; F1 — гибрид первого поколения; F2 — второго и т. д.; В1, или ВС1, — первое поколение беккросса; В2, или ВС2 — второе и т. д. Материнскую форму обозначают значком ♀, отцовскую — ♂. Впрочем, чаще всего обходятся без последних, помещая в записи комбинации скрещивания материнскую форму на первое место, а отцовскую — на второе.
Методика и техника скрещивания зависят от биологии цветения и опыления, оплодотворения, особенностей строения цветков (обоеполые, раздельнополые), расположения последних на растении и в соцветии, от способа опыления, продолжительности сохранения жизнеспособности пестика и пыльцы и условий скрещивания.
Селекционеры используют принудительное, ограниченно-свободное и свободное скрещивания, для осуществления которых часто необходима кастрация растений. Кастрация заключается в удалении незрелых пыльников или их повреждении подрезанием, термической стерилизацией (горячим воздухом или водой) или химической кастрацией — применением специально подобранных гаметоцидов.
При принудительном скрещивании кастрированные и изолированные материнские растения опыляют пыльцой отцовского растения. При свободном скрещивании родительские формы высевают чередующимися рядками. Кастрированные, мужскистерильные или биологически женские материнские растения опыляются пыльцой произрастающих рядом отцовских растений.