Белки представляют собой полипептиды, молекулярная масса которых превышает 6000-10000 дальтон. Они состоят из большого числа аминокислотных остатков.
В отличие от низкомолекулярных пептидов, белки обладают хорошо развитой трехмерной пространственной структурой, которая стабилизируется различного рода сильными и слабыми взаимодействиями. Различают четыре уровня структурной организации белковой молекулы: первичную, вторичную, третичную и четвертичную структуры.
Первичная структура белка представляет собой последовательность аминокислотных остатков, соединенных между собой пептидными связями.
Впервые предположение о роли пептидных связей в построении белковых молекул было выдвинуто русским биохимиком А. Я. Данилевским, идеи которого легли в основу полипептидной теории строения белков, сформулированной немецким химиком Э. Фишером в 1902 г.
Основу первичной структуры белковой молекулы образует регулярно повторяющийся пептидный остов — NH-CH-CO-, а боковые радикалы аминокислот составляют ее вариабельную часть.
Первичная структура белка прочная, т. к. в основе ее построения лежат ковалентные по характеру пептидные связи, представляющие собой сильные взаимодействия;
Соединяясь между собой в различной последовательности, протеиногенные аминокислоты образуют изомеры. Из трех аминокислот можно построить шесть различных трипептидов. Например, из глицина, аланина и валина — гли-ала-вал, гли-вал-ала, ала-гли-вал, ала-вал-гли, вал-гли-ала и вал-ала-гли. Из четырех аминокислот можно образовать 24 тетрапептида, а из пяти — 120 пентапептидов. Из 20 аминокислот можно построить 2 432 902 008 176 640 000 полипептидов. При этом каждая аминокислота используется в построении рассмотренных полипептидных цепочек только один раз.
Многие природные полипептиды насчитывают в своем составе сотни и даже тысячи аминокислотных остатков, и каждая из 20 протеиногенных аминокислот может встречаться в их составе неоднократно. Поэтому число возможных вариантов полипептидных цепочек бесконечно велико. Однако в природе реализуются далеко не все теоретически возможные варианты аминокислотных последовательностей.
Первым белком, первичная структура которого была расшифрована, является бычий инсулин. Его молекула состоит из двух полипептидных цепочек, одна из которых содержит 21, а другая — 30 аминокислотных остатков. Цепочки соединяются между собой двумя дисульфидными связями. Еще одна дисульфидная связь располагается внутри короткой цепи. Последовательность расположения аминокислотных остатков в молекуле инсулина установил английский биохимик Ф. Сэнгер в 1953 г.
Таким образом, Ф. Сэнгер подтвердил полипептидную теорию строения белковой молекулы Э. Фишера и доказал, что белки — это химические соединения, обладающие определенной структурой, которую можно изобразить с помощью химической формулы. К настоящему времени расшифрованы первичные структуры нескольких тысяч белков.
Химическая природа каждого белка уникальна и тесно связана с его биологической функцией. Способность белка выполнять присущую ему функцию определяется его первичной структурой. Даже небольшие изменения в последовательности аминокислот в белке могут привести к серьезному нарушению в его функционировании, возникновению тяжелого заболевания.
Болезни, связанные с нарушениями первичной структуры белка, получили название молекулярных. К настоящему времени открыто несколько тысяч таких болезней.
Одной из молекулярных болезней является серповидноклеточная анемия, причина которой кроется в нарушении первичной структуры гемоглобина. У людей с врожденной аномалией структуры гемоглобина в полипептидной цепочке, состоящей из 146 аминокислотных остатков, в шестом положении находится валин, тогда как у здоровых людей на этом месте — глутаминовая кислота. Аномальный гемоглобин хуже транспортирует кислород, а эритроциты крови больных имеют серповидную форму. Заболевание проявляется в замедлении развития, общей слабости организма.
Первичная структура белка задана генетически. Это дает возможность организмам одного вида поддерживать постоянство набора белков. Однако у разных видов живых организмов белки, выполняющие одинаковую функцию, не идентичны по первичной структуре — на отдельных участках полипептидной цепи они могут иметь неодинаковые последовательности аминокислот. Такие белки называются гомологичными (греч. «гомология» — согласие).
Исследования кон формации белковых молекул показали, что полипептидные цепи не вытягиваются строго линейно, а определенным образом сворачиваются в пространстве, образуя вторичную структуру.
Вторичная структура белка представляет собой сочетание упорядоченных и аморфных участков полипептидной цепи.
Изучая кристаллические структуры соединений, содержащих амидные группы, американский биохимик Л. Полинг установил, что длина пептидной связи близка к длине двойной связи и составляет 0,1325 нм. Поэтому свободное вращение атомов углерода и азота вокруг пептидной связи затруднено.
Кроме того, атомы пептидных групп и α-углеродные атомы располагаются в полипептидной цепи приблизительно в одной плоскости. В связи с этим повороты в полипептидной цепи могут совершаться только по связям, примыкающим к углеродным атомам.
За счет поворотов пептидных групп вокруг α-углеродных атомов, как установили Л. Полинг и Р. Кори в начале 50-х годов прошлого века, полипептидная цепочка сворачивается в α-спираль и стабилизируется за счет образования максимально возможного числа водородных связей.
При образовании вторичной структуры белковой молекулы водородные связи возникают между атомами пептидных групп, расположенными на соседних витках ос-спирали друг против друга. Атом водорода, соединенный ковалентной связью с атомом азота, имеет некоторый положительный заряд. Атом кислорода, соединенный двойной связью с атомом углерода, имеет некоторый отрицательный заряд. Водородный атом, оказавшись напротив атома кислорода, связывается с ним водородной связью. Водородная связь слабая. Однако за счет образования большого числа этих связей обеспечивается сохранение строго упорядоченной структуры.
Водородные связи всегда направлены параллельно воображаемой оси а-спирали, а радикалы аминокислот — наружу от ее витков. Пептидные группы соединяются между собой водородными связями преимущественно через четыре аминокислотных остатка, так как именно их О-С- и H-N-группы оказываются пространственно сближенными.
А-Спираль является правозакрученной. Если смотреть на нее с торца, со стороны N-конца, то закручивание полипептидной цепочки происходит по часовой стрелке. Установлены параметры а-спирали. Расстояние между соседними витками (шаг спирали) составляет ∅54 нм, а внутренний диаметр спирали — 1,01 нм. Один полный виток спирали включает в себя 3,6 аминокислотных остатка. Полное повторение структуры α-спирали происходит каждые 5 витков, включающих в себя 18 аминокислотных остатков. Этот отрезок α-спирали называется периодом идентичности и составляет в длину 2,7 нм.
Полипептидные цепочки сворачиваются в а-спираль не на всем своем протяжении. Процентное содержание заспирализованных участков в белковой молекуле называется степенью спирализации. Белки существенно различаются по степени спирализации, например: для гемоглобина крови она очень высокая — 75%, для инсулина также довольно высокая — 60%, для альбумина куриного яйца значительно ниже — 45%, а для химотрипсиногена (неактивного предшественника фермента пищеварения) крайне низкая — всего 11%.
Различия в степени спирализации белков связаны с рядом факторов, мешающих регулярному образованию водородных связей между пептидными группами. К нарушению спирализации приводит, в частности, образование остатками цистеина дисульфидных связей, соединяющих различные участки одной или нескольких полипептидных цепей. В области, близкой к остатку иминокислоты пролина, вокруг α-углеродного атома которого невозможно вращение соседних атомов, в полипептидной цепи образуется изгиб.
Ряд протеиногенных аминокислот обладают такими радикалами, которые не позволяют им принимать участие в формировании α-спирали. Эти аминокислоты образуют параллельно расположенные складки, соединенные друг с другом водородными связями. Такой тип регулярного участка полипептидной цепи получил название структуры складчатого слоя, или β-структуры.
В отличие от а-спирали, имеющей стержневую форму, β-структура имеет форму складчатого листа. Она стабилизируется водородными связями, возникающими между пептидными группами, расположенными на соседних отрезках полипептидной цепи. Эти отрезки могут быть направлены либо в одну сторону — тогда образуется параллельная β-структура, либо в противоположные — в этом случае возникает антипараллельная β-структура.
Пептидные группы в β-структуре располагаются в плоскостях складок, а боковые радикалы аминокислот — над и под плоскостями. Расстояние между соседними участками полипептидной цепи в структуре складчатого слоя составляет 0,272 нм, что соответствует длине водородной связи между группами -СО- и -NH-. Сами водородные связи располагаются перпендикулярно направлению структуры складчатого слоя. Содержание β-структуры в различных белках колеблется в широких пределах.
Некоторые участки полипептидных цепочек не имеют какой-либо упорядоченной структуры и представляют собой беспорядочные клубки. Такие участки называются аморфными (греч. «аморфос» — бесформенный). Однако в каждом белке аморфные участки имеют свою фиксированную конформацию. При этом в отличие от относительно жестких участков — α-спирали и β-структуры — аморфные клубки могут сравнительно легко изменять свою конформацию.
Белки различаются по содержанию разных типов вторичной структуры. Например, в структуре гемоглобина обнаружены только α-спирали. во многих ферментах присутствуют различные сочетания как α-спиралей так и β-структур, среди иммуноглобулинов встречаются белки, имеющие только β-структуру. Наконец, встречаются и такие белки, у которых упорядоченные участки присутствуют в незначительном количестве, а большая часть полипептидной цепочки имеет аморфную структуру.
Полипептидные цепочки со сформированной вторичной структурой определенным образом располагаются в пространстве, создавая еще один уровень структурной организации белковой молекулы — третичную структуру.
Третичная структура белка образуется в результате специфической укладки упорядоченных и аморфных участков полипептидной цепи в некотором объеме пространства. Она поддерживается за счет сильных и слабых взаимодействий, возникающих между боковыми радикалами остатков аминокислот. К сильным взаимодействиям относится дисульфидная связь, а к слабым — водородная и ионная связи, а также гидрофобные взаимодействия.
Дисульфидная связь образуется при взаимодействии двух близко расположенных радикалов остатков цистеина, содержащих свободные сульфгидрильные группы.
Дисульфидные мостики могут соединять между собой не только отдельные участки внутри одной полипептидной цепи, но и (при образовании четвертичной структуры белка) различные полипептидные цепочки.
Водородная связь может возникать между боковыми радикалами остатков аминокислот, содержащих ОН-группы, например, между двумя остатками серина.
Кроме радикалов остатков серина, подобным образом водородные связи могут образовывать радикалы остатков треонина и тирозина.
В формировании третичной структуры белковой молекулы также принимают участие множество водородных связей, возникающих между боковыми радикалами, например: тирозина и глутаминовой кислоты, аспарагина и серина, лизина и глутамина и др.
Ионные связи возникают при сближении отрицательно заряженных радикалов остатков кислых аминокислот — аспарагиновой или глутаминовой — с положительно заряженными радикалами остатков основных аминокислот — лизина, аргинина или гистидина. Ионная связь между радикалами остатков аспарагиновой кислоты и лизина.
Гидрофобные взаимодействия возникают в воде, вследствие притяжения друг к другу неполярных радикалов остатков аминокислот. К аминокислотам с неполярными радикалами относятся, например, аланин, валин, лейцин, изолейцин, фенилаланин, метионин. Гидрофобное взаимодействие между боковыми радикалами остатков валина и аланина.
Чтобы избежать контакта с водой, неполярные радикалы остатков аминокислот стремятся собраться вместе внутри белковой молекулы. Белок сворачивается в компактное тело — глобулу (лат. «globulus» — шарик). Внутри глобулы образуется гидрофобное ядро, а снаружи нее находятся полярные радикалы остатков аминокислот, которые взаимодействуют с водой. Полярными радикалами обладают, например, кислые и основные аминокислоты, серии, треонин, тирозин, аспарагин, глутамин.
Таким образом, каждая белковая глобула окружена гидратной оболочкой, представленной так называемой «водяной шубой», включающей также структурированные молекулы воды, способные удерживать на поверхности глобулы до половины имеющихся в полипептидной цепочке гидрофобных радикалов. Этим обусловлена растворимость белка.
Благодаря множеству межрадикальных взаимодействий, отдельные участки белковой молекулы оказываются пространственно сближенными и зафиксированными относительно друг друга. В ходе образования третичной структуры белка формируется его активный центр. В результате белок приобретает способность выполнять свою биологическую функцию.
Первым белком, третичная структура которого была установлена, является миоглобин.
Третичные глобулы могут взаимодействовать между собой так, что возникает единая молекула. Такие глобулы называют субъединицами, а их объединение — четвертичной структурой белковой молекулы.
Четвертичная структура белка может строиться из различного числа субъединиц, удерживаемых вместе, главным образом, за счет слабых взаимодействий. Она присуща многим белкам.
Субъединицы, характерным образом расположенные в пространстве относительно друг друга, образуют олигомерный (мультимерный) комплекс. Способность белков к образованию таких структур позволяет объединять в единое целое несколько активных центров и взаимосвязанных функций, что очень важно для обеспечения протекания в клетке сложных обменных процессов.
Четвертичные структуры белков могут строиться из 2, 4, 6, 8,10, 12, 24 и более субъединиц и редко — из нечетного их числа. Например, четвертичную структуру гемоглобина образуют четыре попарно одинаковых субъединицы.
Четвертичная структура белковой молекулы является такой же уникальной, как и другие ее структуры. При этом вся трехмерная упаковка полипептидной цепи в пространстве определяется ее первичной структурой. Специфическая пространственная структура (конформация), в которой белковые молекулы обладают биологической активностью, называется нативиой (лат. nativus — врожденный).