Основой силосования является молочнокислое брожение. При сбраживании сахаров сырья в анаэробных условиях в корме накапливаются молочная и уксусная, а иногда и пропионовая кислоты.
В хорошем силосе концентрация молочной кислоты в 2…3 раза больше уксусной. Кроме этих кислот в незначительных количествах образуется целая гамма других органических кислот.
Силосование (по Е. Н. Мишустину) проходит три условные фазы. Первая фаза идет в аэробных условиях, когда развивается смешанная эпифитная микрофлора за счет питательных веществ клеточного сока, вытекающего из растительных тканей. В этот период накапливается диоксид углерода, расходуется кислород, отмирают ткани. Вторая фаза силосования определяется бурным развитием молочнокислых бактерий, быстрым подкислением корма, pH среды достигает 4,2. В этот период отмирают вредные микроорганизмы. Третья фаза силосования характеризуется отмиранием молочнокислых бактерий из-за подавления их продуктами собственного метаболизма.
В целом созревание силоса длится 15…25 дней.
В результате брожения повышается кислотность корма (увеличивается концентрация ионов Н+, т. е. снижается pH). Именно концентрация свободных ионов водорода, т. е. актуальная кислотность, подавляет развитие вредной микрофлоры. В связи с этим для определения концентрации ионов водорода пользуются не методом титрования, а электрометрическим методом с помощью потенциометра.
Источником водорода может быть любая кислота. Предпочтение отдается молочнокислому брожению потому, что молочная кислота обладает полезными диетическими свойствами, является более сильной и для своего образования требует значительно меньше сахара, чем уксусная. Следовательно, созревание силоса идет быстрее и при значительно меньших потерях сахара и других питательных веществ при молочнокислом брожении, чем при уксуснокислом.
Сахарный минимум, характеристика растительного сырья и его силосуемость
Для хорошего молочнокислого брожения необходимо (помимо анаэробных условий) достаточное количество сахара.
Для того чтобы силос хорошо хранился, нужно создать актуальную кислотность, равную pH 4,2. Минимальное количество сахара, необходимое для образования соответствующего количества молочной кислоты, которое обеспечивало бы доведение pH среды до 4,2, называется сахарным минимумом. Сахарный минимум для разных культур разный. Дело в том, что образующиеся в корме ионы водорода нейтрализуются зольными веществами, аминокислотами, связываются белками и другими соединениями. Вот почему масса растений, богатых белком (бобовых) и щелочными солями слабых кислот (крапива, разнотравье), отличается высокой буферностью и плохой силосуемостью. Буферная способность растений — их способность противостоять изменениям pH.
К легкосилосуемым растениям относятся кукуруза, свекольная ботва, злаковые травы, подсолнечник; к трудносилосуемым — бобовые травы, амарант в фазе цветения, камыш и др.; к несилосуемым — скошенные до цветения крапива, люцерна, а также ботва дыни, картофеля, тыквы, помидоров.
Деление это весьма условно, поскольку силосуемость в значительной степени зависит от содержания сахара, а оно — от агрофона; при обильном азотном удобрении содержание сахара снижается. Кроме того, силосуемость сильно зависит от влажности корма. Оптимальная влажность сырья для силосования 60…70 %.
Травы, особенно бобовые, влажностью более 70 % перед силосованием провяливают. Другим способом улучшения влажной массы, особенно высокобелковой, является добавка соломы (до 15…30 % массы сырья), которую укладывают послойно с основной массой сырья. Толщина слоев соломы 10…20 см.
Провяливание и добавка соломы замедляют развитие гнилостных и маслянокислых бактерий. Кроме того, провяленная масса при силосовании подкисляется сильнее, чем влажная. Это объясняется тем, что, во-первых, увеличивается концентрация ионов водорода; во-вторых, водородные ионы не расходуются на нейтрализацию продуктов гнилостного ферментативного разложения азотистых веществ. Дело в том, что при силосовании влажной свежескошенной массы, особенно высокобелковой, происходит интенсивное ферментативное разложение белковых соединений, в том числе дезаминирование с образованием аммиака, аминов и других щелочных соединений. При силосовании провяленной массы сок не выделяется, процессы ферментативного и микробиологического разложения практически отсутствуют.
Таким образом, содержание сухого вещества дает более объективное представление о силосуемости растений, чем содержание сахара и сахаропротеиновое отношение. Для производства важно знать минимальное содержание сухого вещества, при котором масса данного растения силосуется.
Биохимические процессы, происходящие при созревании силоса
Ткани скошенных и измельченных растений некоторое время продолжают жить. Период их отмирания сокращается за счет создания анаэробных условий. Остатки невытесненного из силосуемой массы кислорода обычно исчезают через 4…10 ч в результате дыхания клеток, при котором потребляется кислород и выделяются диоксид углерода и другие вещества, в том числе соединения, обладающие антимикробным действием, например оксид азота.
Самосогревание массы, иногда достигающее 50…75 °С, является результатом не столько дыхания растений, сколько следствием непрекращающейся деятельности аэробной гнилостной микрофлоры. В результате самосогревания усиливаются потери белка, каротина, жиров, углеводов. Аминокислоты подвергаются дезаминированию. Распад белков идет с образованием различных веществ, в том числе ядовитого характера. При этом большая часть углеводов превращается в фенольные соединения. Одновременно происходит процесс взаимодействия аминокислот, белковых соединений с сахарами и фенолами, фенолов с углеводами, в результате чего образуются непереваримые темноокрашенные вещества — меланины и меланоиды, придающие силосу темно-бурый цвет, а также медовый или хлебный запах. Вот почему такой силос относится к неклассному.
В скошенной и измельченной массе до завершения процесса силосования свободные аминокислоты и пептиды вступают в реакцию с редуцирующими сахарами. Например, при реакции лейцина с ксилозой образуются изовалериановый альдегид, аммиак, диоксид углерода и фурфурол. Продукты разложения сахаров, фурфурол и оксифурфурол, вступая в реакцию с аминокислотами, образуют меланоиды. Последние могут образоваться и в результате взаимодействия редуцирующих сахаров с белками. Тирозин и триптофан также под действием ферментов, например тирозиназы, окисляются с образованием меланинов.
В скошенной массе в присутствии кислорода до прекращения аэробных процессов идет разложение белков с образованием аммиака и соответствующих кетокислот, что объясняет повышенное содержание последних в силосе при плохой трамбовке:
RCHNH2 — СООН + 0,5O2 → RCOCOOH + NH3.
Кроме того, в скошенной массе всегда присутствуют аммонификаторы и аммонифицирующие ферменты, под действием которых протекает процесс дезаминирования аминокислот с образованием оксикислоты и аммиака:
RCNH2 — СООН + Н2O → RCHOH — СООН + NH3.
Если при силосовании образуется большое количество спирта, то в корме накапливаются бетанины, которые при недоброкачественном силосовании могут превращаться в триметиламин, который придает силосу неприятный селедочный запах.
При повышенной влажности идет процесс гнилостного разложения аминокислот и взаимодействия их с органическими кислотами. При этом происходят не только дезаминирование и нейтрализация молочной кислоты в результате выделения аммиака, но и образование соединений эфирного ряда, а также альдегидов и кетонов, придающих неприятный запах силосу. В результате анаэробного разложения белков при высокой влажности массы могут образовываться ядовитые вещества типа бутулинов. Вероятность этого увеличивается при снижении кислотности силоса.
В анаэробных условиях, когда масса закладывается при очень высокой влажности и плохо силосуется, разложение аминокислот идет таким образом, что одна из них окисляется, а другая восстанавливается, при этом выделяется аммиак. Образовавшаяся кетокислота снова вступает в реакцию с одной молекулой исходной кислоты, в результате чего выделяются диоксид углерода и аммиак. Суммарная реакция будет выглядеть примерно так:
R1CHNH2 — СООН + 2R1CHNH2 — СООН + Н2O → R1COOH + 2R2 — СН2 — СООН + 3NH3↑ + СO2↑.
При подобном сопряженном окислительно-восстановительном разложении глицина и аланина суммарное уравнение имеет следующий вид:
СН3 — CHNH2 — СООН + 2RH2CH2 — СООН → 3NH3↑ + СO2↑ + ЗСН3СООН.
Именно этим во многом объясняется накопление уксусной, масляной и других кислот при недоброкачественном силосовании высокобелковых культур.
При длительном хранении силосов с высоким содержанием аминокислот, а также при закладке очень влажной массы, вероятно, может протекать и реакция восстановительного дезаминирования.
RCHNH2 — COOH + 2H+ → RCH2 — COOH + NH3.
В результате нарушения технологий силосования, выемки и скармливания силоса в нем накапливаются масляная, капроновая, валериановая кислоты, кетоны, альдегиды, вызывающие кетозы у животных. Кроме того, образуются микотоксины, а также токсические продукты гнилостного распада белка — кадаверин, путесцин и алкалоиды пинерединового ряда, что особенно вредно сказывается на внутриутробном развитии плода. В силосе под действием микроорганизмов и ферментов расходуется сахар, поэтому иногда увеличивается концентрация белка и аминокислот, что особенно проявляется при микробном синтезе. последних, который можно усилить с помощью азотистых добавок. В целом под действием ферментов и микроорганизмов происходят существенные изменения в аминокислотном комплексе силосуемой массы. Содержание отдельных незаменимых аминокислот может уменьшиться или, наоборот, увеличиться.
Одновременно при правильном силосовании идут и полезные процессы. Во-первых, в результате подкисления размягчаются ткани, расщепляется и гидролизуются клетчатка, что улучшает поедаемость и переваримость растительной массы. Во-вторых, при силосовании белки гидролизуются до аминокислот, что резко увеличивает их переваримость. Это является одной из причин, почему нельзя допускать утечки сока и попадания воды в силос. В противном случае будут вымываться не только углеводы, но и аминокислоты.