Полвека тому назад с северных предгорий Алая в лабораторию Геологического комитета в Ленинграде был доставлен кусок известняка с вкрапленностью зеленовато-желтых чешуек медной руды.
Красивый, не известный до того времени минерал приняли за медную руду потому, что в Средней Азии часто встречаются зеленый малахит и синий лазурит — окисленные руды меди. Их добывали в средние века и еще раньше, о чем говорят так называемые китайские выработки.
Пробитые ручным способом, по-видимому, с помощью железных клиньев, такие выработки оказались и на известняковом гребне Тюя-муюн в предгорьях Алая, где был найден новый зеленовато-желтый минерал.
Исследования желтых пластинок нового минерала в лаборатории показали, что это не медная, а урановая руда, в которой содержится окись урана.
Этим открытием очень заинтересовались, так как в рудах урана всегда есть радий, и в пещерах Тюя-муюна; стенки которых были покрыты коркой известняка с вкрапленностью желтого минерала, начали добычу радиевой руды.
Мраморовидные известняки Тюя-муюна выдаются в виде узкого гребня из зажимающих их углистых, кремнистых и глинистых сланцев. Основание известнякового гребня уходит на неисследованную глубину и остается пока нам неизвестным. Длина гребня 6—8 км, а ширина в среднем около 600 м. Вытянутый по широте гребень с почти отвесными склонами пересекается ущельем р. Араван глубиной около 300 м.
Район предгорий Алая, где лежит гребень Тюя-муюн, имеет характер полупустыни; количество осадков, выпадающих в течение года, не более 400—500 мм. Однако дожди идут почти исключительно в марте и апреле, а потому в этот период создаются хотя и кратковременные, но обильные потоки воды.
В далеком прошлом, по-видимому, климат в этих местах был более влажным и теплым, и на гребень Тюя-муюн выпадало гораздо большее количество осадков, чем в наше время. Как мы увидим ниже, талые снеговые воды и дождевые потоки послужили причиной образования в Массиве гребня Тюя-муюн большого количества пустот.
В некоторых из таких пустот, на их стенках, образовались скопления особого вида породы — «рудного мрамора», пронизанного жилками и вкрапленностью зеленовато-желтого минерала, о котором было сказано выше, названного тюямунитом. Удлиненные, уходящие в глубь массива скопления «рудного мрамора», покрывающие стенки трубчатых пустот, получили название жил.
На небольшом пространстве, длиной около 2,5 км и шириной 600 м, было найдено несколько таких жильных образований. Наибольшее значение имела Главная жила, но кроме нее был разведан ряд других.
Исследование жил Тюя-муюна показало, что они образовались путем заполнения рудной массой и баритом уходящих вниз вертикальных или наклонных и изломанных каналов — трубок — в известняковом массиве гребня.
Объяснение происхождения трубок и процессов заполнения их рудным веществом имело очень большое значение для определения возможных запасов руды и надежности всего месторождения; оно оказалось возможным лишь после изучения всех минеральных образований, покрывающих стенки пещер и трубок. Только после того, как было установлено, что стенки пустот сперва были когда-то покрыты шестоватыми натечными корками кальцита, стала ясна причина образования полостей в массиве Тюя-муюна, так как подобные отложения образуются в пустотах, связанных с растворением толщ известняков поверхностными и отчасти грунтовыми водами. По своей форме и происхождению пещеры и трубки Тюя-муюна относятся именно к таким, как их называют, карстовым пустотам.
Процесс образования карста рисуется обычно в таком виде. В зоне поглощения поверхностных вод, богатых углекислотой, происходит растворение известняка и возникают большей частью колоколообразные пустоты — пещеры. Когда воды спускаются сравнительно быстро по трещинам вниз, размывая и растворяя известняк, образуются вертикальные или наклонные трубки диаметром до нескольких метров; в местах поворотов или колен они расширяются в колоколообразные пещеры. Трубки могут на глубине оканчиваться слепо пещерой, сетью узких трещин — в массиве известняка или в зоне постоянного спокойного течения переходить в горизонтальные ходы. Нижние пещеры, большей частью колоколообразной формы, соединяются между собой наклонными ходами; они обычно завалены упавшими сверху обломками и целыми глыбами камня. Нижние пещеры служат связывающим звеном между вертикальными трубками и самыми глубокими карстовыми образованиями — горизонтальными ходами. По горизонтальным ходам, лежащим на уровне грунтовых вод, нередко текут ручьи и даже реки; выходя в пониженных частях рельефа на поверхность земли, горизонтальные ходы, по которым текут ручьи, дают источники воды.
Карстовые образования развиваются в определенной последовательности, в течение достаточно длительного времени. Зрелый карст должен иметь все элементы — верхние пещеры, вертикальные трубки, нижние пещеры и горизонтальные ходы, которые не должны оканчиваться слепо.
В отличие от обычных грунтовых вод карстовые воды могут резко менять свой уровень, и иногда давно высохшие пещеры после ливня неожиданно заполняются водой.
Достигая больших глубин, карстовые воды нагреваются и всегда теплее поверхностных; с углублением через каждые 100 м их температура повышается на 2—3°.
Как известно, уровень грунтовых вод зависит не только от количества выпадающих осадков, проницаемости горных пород и тому подобных условий, но также и от высоты уровня рек данного района. По мере пропиливаний реками своего русла и снижения их поверхности понижается и уровень грунтовых вод.
Поэтому наиболее характерные формы карстовых пустот соответствуют определенным уровням рек, показателями которых, как известно, являются речные террасы.
Когда вследствие понижения уровня грунтовых вод или изменения климатических условий карстовые пустоты высыхают, в них начинается процесс заполнения минеральным веществом. Из просачивающихся по мелким трещинкам в потолке пещер растворов начинает выделяться карбонат, образующий спускающуюся вниз известняковую сосульку-сталактит, который с течением времени становится все толще и толще.
Неуспевшая испариться с поверхности сталактита вода падает на дно пещеры, и на этом месте постепенно наращивается известняковый столбик — сталагмит. Он делается все выше, пока, наконец, сливается со сталактитом, образуя колонну, подпирающую потолок пещеры.
Так постепенно происходит с помощью воды заполнение пустот, образованных ею же в массивах известняковых гор.
Полости Тюя-муюна начинаются обычно верхними пещерами, имеющими сообщение с поверхностью через извилистые, ветвящиеся ходы. Таковы, например, Желтая в сверкающая при свете фонарей Баритовая пещеры. Вследствие размывания Тюямуюнского гребня эти верхние пещеры в наше время находятся, конечно, гораздо ближе к поверхности, чем в эпоху образования их.
От верхних пещер в глубь массива идут вертикальные или коленчатые трубки, резко меняющие свое направление в зависимости от трещиноватости известняка. В местах переломов и изгибов они расширяются. Часто встречаются также вертикальные шахты («органные трубки»), отличающиеся большими размерами.
На глубине 83 м главная жила начинает в некоторых местах расширяться. Небольшое раздутие ее в этой зоне носит название Белой пещеры, а с глубины 114 м начинается обширная колоколообразной формы Нижняя пещера, достигающая в ширину 8 м. От верхней части Нижней пещеры уходит вверх на неизвестную высоту органная трубка, на стенках которой нет никаких отложений руды.
Кроме формы, типичной для карстовых пустот, на происхождение трубок Тюя-муюна указывает еще та связь, которая наблюдается между ними и речными террасами его района.
Самой верхней террасе правого берега р. Араван, образование которой происходило в эпоху, когда уровень реки задержался в течение длительного времени на одной высоте, соответствуют верхние пещеры — Желтая, Баритовая и др., образование которых происходило при постоянной высоте уровня грунтовых вод в течение длительного периода времени. Затем р. Араван стала быстро пропиливать русло и углубляться; с понижением реки стал снижаться и уровень грунтовых вод, расширение верхних пещер прекратилось, и вода стала уходить по трещинам вниз, образуя вертикальные, коленчатые и органные трубки.
Образование Нижней пещеры происходило во время новой остановки понижения уровня грунтовых вод, которой на поверхности соответствует образование террас в ряде мест Восточной Ферганы, когда временно остановилось пропиливание поперечных долин. Еще ниже в долине Аравана имеется резко выраженная терраса, которой на не достигнутой разведками глубине в пустотах Тюя-муюна должны соответствовать нижележащие пещеры, заканчивающиеся трещинами или, вероятнее, горизонтальными ходами, соединенными с водоносной сетью известнякового массива.
На глубине 174,5 м горными выработками, которые велись на Тюя-мутоне, был встречен обильный приток воды, а мощный источник Кок-булах, выбивающийся на склоне гребня близко к предполагаемому уровню карстовых вод, доказывает наличие проработанного горизонтального хода.
Поэтому можно считать почти доказанным, что Главная жила представляет собой зрелый карст с горизонтальной сетью подземных ходов. Действительно, выработка ид Нижней пещеры пошла сперва круто вниз, а затем сделалась почти горизонтальной. По-видимому, и глубже имеется другой горизонтальный ход, связанный с сетью водоносных трещин массива, чем и объясняется встреченный шахтой обильный приток воды. На продолжении верхнего горизонтального хода можно ожидать большие, направленные вверх колоколообразные пустоты.
Случаи образования отложений руд в карстовых пустотах известны и в других местах, кроме Тюя-муюна.
Обычно это месторождения свинцово-цинковых руд как, например, в Каринтии и в Монтепони, где на большую глубину уходят вертикальные трубки диаметром до 40 м, заполненные баритом и свинцовым блеском. Однако в этих месторождениях не сохранился так хорошо карего вый характер пустот, потому что стенки трубок сильно разъедены рудными растворами, и только в Западной Африке, в Огави, есть известное жильное месторождение Тзумеб, образование которого очень сходно с образованием трубчатых жил Тюя-муюна.
Насколько просты и хорошо изучены карстовые процессы, которым обязаны существованием пещеры и трубки Тюя-муюна, настолько сложно образование покрывающих их стенки рудных корок.
С одной стороны, отложение по стенкам, очевидно, указывает на карстовый характер пустот. С другой стороны, «рудный мрамор» и пронизывающие его минералы могли произойти только вследствие процессов, являющихся отголосками вулканических явлений (так называемые поствулканические явления). Это обстоятельство долго затрудняло объяснение происхождения месторождения Тюя-муюна.
В главной жиле непосредственно на мраморовидном светлорозовом или слабофиолетовом известняке массива лежит слой радиальнолучистого, шестоватого кальцита. Это сталактитовые и сталагмитовые образования, которые покрыли стенки карстовой полости — трубки. Они образованы растворами, притекавшими сверху. Это был нормальный процесс отложения из растворов углекислой извести, какой наблюдается во всех карстовых полостях, не мешавший дальнейшей циркуляции воды.
Однако в последующем этот процесс был прерван другим, в результате действия которого шестоватая корка кальцита была частично перекристаллизована в темносерый с красновато-бурым оттенком «рудный мрамор». Он пронизан желтым тюямунитом, заполняющим промежутки между крупными зернами и тоненькие трещинки в массе мрамора, а в небольших полостях отложились радиальнолучистые корочки зеленых ванадиевых минералов.
Образование «рудного мрамора» можно объяснить вторжением в карстовые пустоты Тюя-муюна снизу, с больших глубин, горячих, с температурой около 60°, минерализованных растворов, которые принесли с собой соединения меди, железа, ванадия играна. Эти соединения стали отлагаться по стенкам полостей, «съедая» верхние слои корки натечного известняка и замещая его продуктами химических реакций взаимодействия.
По стенкам полостей отлагались также корками коллоидальные урано-ванадиевые соединения. Очень возможно, что они были принесены в сернокислых растворах, которые взаимодействовали с кальцитом, покрывавшим стенки пустот, образуя гипс.
Образование «рудного мрамора» шло при совершенном заполнении карстовых полостей горячими растворами, о чем говорит кольцевой характер слоев «рудного мрамора», покрывающего как верхние, так и нижние стенки полостей.
Однако в обширных пустотах Тюя-муюна (как, например, в Желтой пещере) встречаются и натечные формы — сталактиты «рудного мрамора». Их происхождение объясняется тем, что при заполнении пустот горячими растворами принесенные ими газы и пары могли скопляться в верхних частях больших пещер, сохраняя свободное от растворов пространство, в котором могло происходить образование сталактитов «рудного мрамора».
Проникновение горячих растворов, осаждавших «рудный мрамор», могло происходить с больших глубин по трещинам или по линии сбросов.
Позднее, в одних случаях немедленно после окончания образования «рудного мрамора», в других — через более или менее значительный промежуток времени, начался последующий процесс отложения корок барита, толстым слоем покрывающих «рудный мрамор». Барит осаждался из поднимавшихся снизу менее горячих растворов. В начальной стадии кристаллизация барита происходила в присутствии взмученных частиц красной, железистой глины, чём, может быть, объясняется красный цвет первых слоев корок барита. В дальнейшем количество растворов уменьшилось, они уже не заполняли пустот н очистились от взмученной красной глины. Из них осаждался светлый, медово-желтый барит. Частично корка светлого барита явилась результатом перекристаллизации верхних слоев красного барита.
В тех случаях, когда осаждение барита происходило немедленно после окончания рудного процесса, верхние слои «рудного мрамора» носят на себе следы разъедания баритовым раствором.
Наконец, когда процесс отложения из горячих растворов закончился, в пустоты снова стали просачиваться поверхностные воды, растворяя по пути известняк и отлагая его затем) в виде корок сверху барита. Так получилась, например, красивая белая облицовка в Нижней и Белой пещерах.
Если полость трубки была заполнена обломками «рудного мрамора» и известняка, проникавшие мен1ду ними растворы цементировали обломки зеленоватым мраморным ониксом, образуя брекчию, — как называются массы сцементированных угловатых обломков горных пород.
Если полость трубки была совершенно заполнена отложениями «рудного мрамора» и барита, вода задерживалась и начинала выщелачивать коллоидальные уранованадиевые соединения; при испарении растворов корки известняка покрывались гипсом с желто-зелеными кристаллами тюямунита.
Такой процесс вторичного отложения тюямунита вследствие закупорки баритом трубок очень част в жилах Тюя-муюна. Образующиеся растворы ищут путь необязательно по оси трубки, а там, где встречают наименьшее сопротивление движению вниз. Обычно они проникают между слоем «рудного мрамора» и прилегающим к нему красным баритом. Двигаясь, они отлагают между этими слоями кальцит и красную глину.
В результате вторичного отложения из растворов, циркулировавших в пустотах после окончания рудного процесса, в нижних зонах Тюя-муюна (Нижняя пещера) отложилась толща перемежающихся слоев сильно измененного «рудного мрамора», красной глины, красных сталагмитовых корок, фиолетовой глины и скоплений тюямунита и ванадиевых минералов.
О существовании радиоактивных, т. е. испускающих, какие-то загадочные лучи, веществ узнали впервые в самом конце прошлого века. Открытие таких лучей было сделано французским физиком А. Беккерелем при изучении им действия излучения солей урана на фотографическую пластинку. Несколько позднее, по предложению Марии Кюри, вещества, которые обладали способностью производить подобные излучения, были названы радиоактивными. В дальнейшем ей вместе с Пьером Кюри удалось выделить из урановой смоляной руды новое вещество — радий, который отличается рядом замечательных свойств. Он непрерывно выделяет тепло, нагревая окружающую среду; один грамм радия мог бы в течение часа нагреть три грамма воды от нуля градусов до температуры кипения.
Заключив небольшое количество радия в колбу, можно через некоторое время открыть в ней следы газа гелия, содержание которого с течением времени все увеличивается. Присутствие радия делает окружающий воздух электропроводным; некоторые вещества в темноте вблизи от крупинки радия становятся светящимися.
Исследованиями физиков и химиков было установлено, что все эти явления происходят вследствие распада атомов радия. Частицы распадающегося атома уносятся с огромной скоростью в окружающее пространство. При этом наблюдаются три вида излучений: α-излучения, состоящие из положительно заряженных частиц гелия, β-лучи — из отрицательно заряженных электронов и γ-лучи, или рентгеновские лучи, очень короткой длины волны. Вследствие распада атомов взятое количество радия медленно уменьшается, и через 1600 лет из него должна остаться только половина. Скорость распада не изменяется ни при каких условиях. Так, радиоактивное вещество подвергали давлению в 24000 атмосфер, охлаждали до —240°, нагревали до высокой температуры, вводили его в сильнейшие электрические и магнитные поля, но скорость распада оставалась постоянной.
Дальнейшими опытами установлено, что явление распада свойственно, кроме радия, и другим веществам, но только скорость распада у них иная, чем у радия.
Сам радий является промежуточным продуктом распада урана, продолжительность распада которого определяется в 5000 млн. лет. Конечным продуктом этого распада является вещество, по химическим и физическим свойствам ничем не отличающееся от обыкновенного свинца. Разница между обыкновенным свинцом и получающимся в результате распада урана только в атомном весе: у первого он 207.2, у второго 206.0. Существует и второй ряд радиоактивных элементов, к которому принадлежит торий. В результате распада тория также получается свинец, но с атомным весом 208. Внутри содержащих уран минералов находятся и все остальные продукты распада, в числе их конечный продукт — свинец, количество которого с течением времени все увеличивается. Чем старее урановый минерал, тем больше он должен содержать уранового свинца. Таким образом по количеству свинца можно судить о возрасте уранового минерала. Среди продуктов распада, кроме свинца, не подвергается также изменениям газ гелий. Он удаляется только из поверхностного слоя, но большая часть его остается включенной внутри куска минерала. На измерении количества свинца и гелия в урановых минералах и основан один из способов абсолютного геологического летоисчисления, т. е. определения времени, протекшего со времени образования исследуемого куска уранового минерала.
Кроме важного значения для науки, радий имеет широкое практическое применение, в особенности в области медицины. Поэтому месторождения его руд привлекают к себе большое внимание. Радий добывается в настоящее время из урановой смоляной руды Иоахимстальского месторождения в Чехии, из руд месторождения Медвежьего озера в Канаде, в Бельгийском Конго (Катанга), в штатах Юта и Колорадо США из карнотитовых руд. Обычно в тонне сырой руды его содержится всего несколько десятков миллиграммов, что обусловливает большие трудности извлечения и высокую цену грамма радия, порядка 40000—50000 долларов.
Месторождение Тюя-муюна в течение нескольких лет служило источником получения радия в Союзе ССР.
В 1925 и 1926 гг. добыча руды производилась в Белой пещере Главной жилы. Добываемая руда вывозилась и перерабатывалась на одном из химических заводов Севера. Одновременно углублялась шахта, которая тогда же достигла уровня грунтовых вод. Большой приток воды остановил ее дальнейшую углубку.
Тюямуюнское месторождение богато разнообразными и редкими минералами.
Кроме тюямунита, там встречается замечательный минерал — радиобарит, который образовался в результате перекристаллизации сернокислого бария, захватившего при этом некоторое количество сернокислого радия. Он встречается в «рудном мраморе» в виде медово-желтых, непрозрачных таблитчатых кристаллов и обладает высокой радиоактивностью.
Из других минералов в Желтой пещере найден алаит — свободная ванадиевая кислота в виде мягких волокнистых масс малинового цвета, которые покрывали скопления серо-фиолетовых глин в ее пустотах. Очень интересны корки зеленовато-желтого мраморного оникса, так называемого радиолита, которые используются в промышленности в качестве поделочного камня. В Желтой пещере и верхних зонах месторождения часто встречается зеленый малахит в форме нежноволокнистых и радиальнолучистых скоплений в пустотах выщелоченных полостей. Пустоты в Желтой пещере нередко выстланы кристаллической, радиальнолучистой коркой оливково-зеленых ванадиевых минералов (туранит, тангеит), носящих местное название табачной, или оливковой, руды.
На различных глубинах, от Желтой пещеры до дна Белой и Нижней пещер, часто встречается в разных формах гипс, которому кристаллики тюямунита придают зеленоватый тон. В пустотах жил и пещер залегают скопления красных, черных, желтоватых, белых глин, а в одной из жил найдена медистая голубая глина.
Тюямуюнское месторождение было первым месторождением руд радия, которое начали разрабатывать в СССР. Этим было положено начало промышленной добыче редких металлов, получившей столь мощный размах в эпоху сталинских пятилеток.
Интерес к радию не ограничивался изучением и эксплуатацией одного Тюямуюнского месторождения. Одновременно начались поиски радиоактивных руд в различных районах Средней Азии. Они увенчались успехом и привели к открытию новых точек, характеризующихся иными условиями образования или, как говорят геологе, иным генезисом руд и новыми разнообразными урановыми минералами. Среди них в особенности надо отметить месторождения Табошарское в западных отрогах Тянь-шаня, а также Майли-су и Уйгур-сай в Северной Фергане.
До последнего времени урановые руды этих месторождений рассматривались только как источник радия по преимуществу, так как уран имел очень ограниченное применение.
Но 1940 год принес новые замечательные открытия, которые сулят широкое будущее урану. Возникает совершенно новая задача, связанная с использованием внутриатомной энергии урана, которая уже по существу является проблемой самого урана.
Для того чтобы несколько разобраться в этом новом цикле явлений, вернемся на время к явлениям радиоактивности и некоторым вопросам так называемой ядерной физики.
Прошло всего около 40 лет со времени открытия явлений радиоактивности. За это время данная область знаний получила исключительное развитие и оказала громадное влияние на соседние научные дисциплины — физику атома и химию.
Действительно, радиоактивность познакомила нас с реальностью существования отдельных атомов, научила их считать и делать видимым пути их движения (в камере Вильсона), она впервые позволила наблюдать самопроизвольное превращение одного химического элемента в другой.
Как было уже указано выше, при самопроизвольном распаде атомов естественных радиоактивных элементов наблюдаются три типа излучений: или при своем распаде ядро атома теряет так называемую α-частицу, представляющую не что иное, как ядро атома газа гелия с двойным положительным зарядом, или ядро теряет β-частицу, представляющую электрон с массой, в 1840 раз меньшей, чем масса атома водорода с отрицательным зарядом, или, наконец, этот распад сопровождается γ-излучением электромагнитного характера, сходным с рентгеновскими лучами.
Теперь, в значительной мере на основании изучения радиоактивных явлений, мы представляем себе, что атом любого химического элемента состоит из трех типов элементарных частиц: из протонов, или ядер атома водорода, несущих по одному положительному заряду, из нейтронов — частиц, открытых лишь в 1932 г., обладающих массой, равной массе атома водорода, но лишенных всякого электрического заряда, и, наконец, из электронов. При этом ядра, в которых сосредоточена практически вся масса элемента, слагаются из двух простейших частиц — протонов и нейтронов, а электроны располагаются во внешней сфере, вращаясь вокруг ядра по орбитам на сравнительно больших расстояниях. Они компенсируют положительный заряд ядра, сообщенный ему протонами.
Если мы будем рассматривать последовательно элементы периодической системы Д. И. Менделеева; постепенно от легких элементов к более тяжелым, то увидим, что по мере перехода к более тяжелым атомам количество входящих в состав их ядер нейтронов начинает преобладать над количеством протонов. Наконец, при известном избытке нейтронов такие системы делаются, по-видимому, уже недостаточно устойчивыми. Поэтому, начиная с 82-го порядкового номера периодической таблицы, мы встречаемся, на ряду с устойчивыми ядрами химических элементов, также с существованием в природе неустойчивых ядер, способных к самопроизвольному распаду, т. е. обладающих естественной радиоактивностью.
Однако в 1939 г. О. Ганом и Ф. Штрассманом в Германии, Ф. Жолио во Франции и Л. Мейтнер и О. Фришем в Дании было показано, что под влиянием бомбардировки ядер урана нейтронами последние способны раскалываться на две почти равные части, причем процесс этого деления протекает с большим выделением энергии. Этим самым было открыто совершенно новое явление раскалывания ядер элементов, отличное от ранее изученных процессов радиоактивного распада. Этот процесс можно себе представить следующим образом. Ядро урана является малоустойчивым. После улавливания еще одного нейтрона образовавшееся сложное ядро распадается путем деления на два новых ядра, сумма электрических зарядов и масс которых равна заряду и массе исходного ядра урана. Получившиеся новые ядра будут отвечать по своему строению более легким, чем уран, химическим элементам. Но они вместе с тем обладают огромным избытком нейтронов в ядре и, следовательно, избытком массы по сравнению с той, которая отвечает устойчивому состоянию ядра в данном месте периодической системы. Поэтому вновь начинается распад в этих ядрах и их превращение в другие химические элементы.
Надо ко всему сказанному добавить, что в настоящее время физики могут раскалывать не любой атом урана, а только атом его изотопа с весом 235. Напомним, что уран, обладающий самыми тяжелыми атомами среди всех металлов, состоит из смеси трех разновидностей весьма сходных атомов, или изотопов, урана с атомными весами 234, 235 и 238. Изотоп 235 находится в любом урановом препарате всего в количестве 0,7% по отношению к сумме атомов урана, и выделить его из этой смеси чрезвычайно трудно.
Итак, только бомбардировка нейтронами и их столкновение с ядром атома 235 взорвет его, раздробляя на два новых. Эти движущиеся обломки, оказывается, обладают огромной энергией. Но их легко остановить некоторыми преградами и уловить всю их энергию в виде обыкновенного тепла.
В очень схематизированном виде атом урана и летящие в него нейтроны изображены на чертеже. Здесь ясно видно, что быстро двигающийся нейтрон может пролететь мимо цели, а медленный «снаряд» будет как бы «всосан» ядром урана. При этом ядро расщепится на два новых, которые разлетятся с катастрофической силой. Некоторые «остаточные части» в виде трех или четырех нейтронов останутся от атомного расщепления и свободно вылетят также с громадной силой. Энергия разрыва будет в несколько миллиардов раз больше энергии употребленного снаряда. Получаются такие же соотношения, как при взрыве некоторого количества динамита небольшим детонатором.
Первый нейтроновый снаряд должен быть пущен извне. А затем нейтроновые осколки первого взрыва взорвут несколько новых ядер, и дальнейшее расщепление атомов будет продолжаться само собой по схеме цепной реакции (подобно тому, как поставленные кости домино падают друг за другом, если толкнуть первую кость).
Возникает вопрос: как управлять этим взрывом? Но особенности этого явления сами приходят на помощь человеку. Оказывается, что нейтроны, выброшенные атомным взрывом, двигаются слишком быстро, чтобы попадать в другие ядра и их взрывать. Их полет для этого должен быть искусственно замедлен. В качестве такого замедлителя могут служить водородные атомы. Именно эго обстоятельство делает особенно ценным новое открытие физиков, создавая возможность искусственно регулировать скорость разрушения атомов урана и тем самым рационально использовать освобождающуюся при этом энергию. Надо создать замедленную цепную реакцию, подобную горению каменного угля на воздухе, что может быть достигнуто пропитыванием урановой массы водородом или водой.
После начала реакции вода в соответствующей дозировке уничтожит избыток энергии, и реакция будет протекать с желаемой скоростью.
Расчеты показали, что полная энергия, которую можно получить при расщеплении атомов, содержащихся в 1 кг урана, эквивалентна энергии 5000 т сжигаемого угля.
Вот почему ученые видят теперь в уране источник энергии будущего и увлекаются заманчивой и близкой идеей создания атомных силовых установок.
Естественно, что вновь появился большой интерес к месторождениям урана, которые рассматриваются теперь не только как источники радия, но и как сырьевые базы, обеспечивающие возможность получения изотопа урана 235.
Мировые запасы урана в недрах составляют в настоящее время приблизительно 12000 т (в пересчете на U3O8). Из них на долю Европы приходятся 600 т, на долю Бельгии (Конго) — около 3000 т, Англии принадлежит свыше 6000 т (Канада) и США обладают примерно 2400 т.
Всего за 40 лет на всем земном шаре добыто около 1,2—1,3 кг радия, главным образом при переработке урановых руд. Лишь за последние годы у нас в СССР стали получать радий также из некоторых нефтяных вод путем очень простых и остроумных технологических приемов. Обычно содержание радия в руде находится в строго определенной зависимости от содержания в ней урана. Примерно на каждые 3 т урана (при условии радиоактивного равновесия) приходится 1 г радия.
В мировой практике известны три различных типа месторождений урана. Два из них дают первичные руды урана, представленные преимущественно тяжелым смоляно-черным минералом уранинитом (смесь закиси и окиси урана с некоторым количеством свинца) или его коллоидальной разновидностью — урановой смоляной рудой. Эти руды отлагались или в так называемых пегматитовых жилах, близких по составу к граниту, сопровождающих гранитные внедрения, или в рудных жилах, отложившихся из горячих водных растворов. Первичные урановые минералы легко изменяются вблизи дневной поверхности, переходят в растворы, из которых выпадают под действием таких кислот, как фосфорная, ванадиевая и др. В этом случае образуются вторичные урановые месторождения, представленные яркозелеными минералами — урановыми слюдками или яркожелтыми урано-ванадатами — карнотитом и тюямунитом.
В Средней Азии, как уже указывалось выше, было найдено несколько месторождений урана. Наиболее обещающее и интересное находится в Карамазарских горах — Юго-западных отрогах Тянь-шаня. Здесь горными выработками вскрыты рудные жилы, обогащенные в верхней зоне урановыми слюдками. Ниже, под зеркалом грунтовых вод, появились своеобразные землистые «урановые черни», напоминающие по составу урановую смоляную руду, и местами среди сернистых руд свинца, цинка и мышьяка встречены уже настоящие первичные урановые смоляные руды.
Месторождения совсем другого типа обнаружены в Северной Фергане, где они приурочены или к континентальным отложениям песчаников и галечников, или к морским известнякам нижнетретичной эпохи.
В местности Уйгурсай на правобережье р. Сыр-дарьи в пласте песчаника залегают яркожелтые скопления карнотита, осевшие, по-видимому, на границе карбонатной нижележащей среды и сульфатных растворов, спускающихся с гор. Они очень сходны с карнотитами западных штатов США.
А по среднему течению р. Майли-су яркожелтые фосфаты и ванадаты урана пропитывают пласт известняка, залегающий в куполе нефтеносной складки.
В Средней Азии известны и другие точки с урановым оруденением. Здесь намечается существование своеобразной «урановой провинции» с многочисленными месторождениями урана разного типа.
Именно в Средней Азии наша молодая урано-радиевая промышленность получит в первую очередь необходимое ей минеральное сырье, которое будет применено как в технике, так и в научно-исследовательских институтах Союза ССР для решения ведущих вопросов современной физики и энергетики.