Факультет

Студентам

Посетителям

Устойчивость сельскохозяйственных растений к патогенным микроорганизмам

Под устойчивостью растений к патогенным микроорганизмам понимают способность их предотвращать, ограничивать или задерживать развитие болезни.

Полная невосприимчивость к инфекционным болезням при наличии контакта с возбудителем и условий, необходимых для заражения, называется иммунитетом. Иммунитет основывается на биологическом несоответствии растения и патогена, неспособностью патогена внедряться в растение и развиваться в нем. Часто понятия «иммунитет» и «устойчивость к болезням» употребляют как синонимы.

Широко распространены такие болезни сельскохозяйственных растений как вирусное увядание, ржавчина, черная и пыльная головня, мучнистая роса, фитофтороз и др.

Организмы-паразиты имеют активный ферментный аппарат, который способен перерабатывать самые разнообразные группы веществ в растениях от белков и нуклеиновых кислот до целлюлозы клеточных оболочек. Кроме того, патогены вырабатывают различные вещества, которые нарушают обмен веществ заболевшего растения. К ним относятся органические кислоты, физиологически активные вещества (гиббереллины, ауксины), токсические продукты метаболизма.

При заражении растения наблюдается вспышка дыхания, а впоследствии спад дыхания, особенно у неустойчивых растений. Нарушается работа рибосом, митохондрий, хлоропластов и других органелл клетки. Снижается интенсивность фотосинтеза, развивается хлороз, уменьшается площадь листьев, сухая масса органов и всего растения.

Различают иммунитет неспецифический и специфический. Неспецифический, или видовой иммунитет по невосприимчивость ботанического вида к патогенам. Иммунитет специфический, или сортовой — это невосприимчивость определенных сортов какого-либо вида растений к патогенам, которые могут поражать другие сорта данного вида растений.

Врожденный иммунитет формируется в процессе длительной эволюции растения и патогена, контролируется генами устойчивости и почти не изменяется под влиянием условий среды.

Устойчивость растений к болезням основана на разнообразных механизмах защиты. Их подразделяют на 1) конституционные, т.е. присутствующие в тканях растения-хозяина до инфекции и 2) индуцированные, т е. возникающие в ответ на контакт с паразитом или его выделениями.

Конституционные (или пассивные) механизмы устойчивости включают:

  • особенности структуры тканей, как механического барьера для проникновения инфекции (наличие волосков, кутикулы, пробковой ткани). Например, восковой налет, густая опушенность листьев и стеблей обеспечивают несмачиваемость и являются препятствиями для прорастания спор грибов и заражения растения. Большое значение имеет толщина кутикулы, с которой часто связана устойчивость к мучнистой росе. Опушенность листьев затрудняет питание на
  • растении тлей, цикадок и других насекомых с колющесосущим аппаратом, которые являются распространителями вирусов. Препятствует заражению также сильная склеренхима, плотная паренхимная ткань.
  • особенности габитуса растений. Например, сорта картофеля с более рыхлым кустом лучше проветриваются, поэтому меньше поражаются грибными заболеваниями, для развития которых требуется обычно высокая влажность;
  • химический состав тканей растения и недостаток веществ, которые жизненно необходимы для развития паразита. Например, у лука те сорта, которые содержат больше дисахаридов, меньше поражаются болезнями при хранении, чем луковицы, содержащие много моносахаридов;
  • способность к синтезу и выделению веществ со свойствами антибиотиков (фитонцидов). Эта группа веществ представлена эфирными маслами, гликозидами, фенольными соединениями, которые губительно действуют на болезнетворные микроорганизмы. Такими веществами богаты, например, лук и чеснок. Оздоравливающее действие лесного воздуха также связано с присутствием в нем большого количества фитонцидов;

Индуцированные (или активные) механизмы устойчивости представляют защитную реакцию растений на внедрение патогена:

  • во всех случаях усиливается дыхание и энергетический обмен;
  • дополнительно накапливаются вещества, обеспечивающие общую устойчивость (фитонциды, фенолы);
  • создаются дополнительные защитные барьеры из разрастающихся покровных и механических тканей;
  • синтезируются специфические вещества со свойствами антибиотиков — фитоалексины, PR-белки, короткие пептиды тионины и дефензины.

Фитоалексины — это довольно большая группа низкомолекулярных веществ вторичного происхождения, которые синтезируются в местах внедрения патогена и подавляют его развитие. До инфицирования эти соединения в тканях отсутствуют, и синтезируются в ответ на внедрение патогена. В зависимости от вида растений состав фитоалексинов различается. Например, у бобовых в качестве фитоалексинов служат изофлавоноиды (у люцерны — медикарпин, у сои — глицеолин), а у пасленовых — сесквитерпены (у картофеля и томатов — ришитин, у табака и перца — капсидиол).

Установлено, что растение восприимчиво к патогену, если он не вызывает синтез фитоалексинов. Искусственное подавление способности синтезировать фитоалексины также повышает восприимчивость не только к своему патогену, но и к другим, ранее не поражавшим данное растение. Следовательно, фитоалексины обеспечивают поддержание видового иммунитета (для неспециализированных патогенов), и сортовой устойчивости к специализированным патогенам.

Многие PR-белки (pathogenesis related proteins) являются гидролитическими ферментами, расщепляющими соединения клеточных оболочек паразитов. Например, β-1,3-хитипаза расщепляет хитин грибных патогенов, а β-1,3-глюканаза — глюкановые полисахариды клеточной оболочки. В результате этих процессов образуются олигосахариды, которые в свою очередь усиливают синтез фитоалексинов. Образование фитоалексинов индуцируется также олигосаридами, которые образуются в процессе разрушения клеточной оболочки растений ферментами патогена.

Низкомолекулярные пептиды тионины и дефензины токсичны для патогенов. Тионины — это белки с высоким содержанием аминокислоты цистеина. Они обладают высоким сродством к фосфолипидам, способны нарушать структуру мембран и, как следствие, проницаемость клеточных мембран. Поскольку клеточные мембраны имеют сходное строение как у микробной так и у растительной клетки, то тионины токсичны не только для бактерий и грибов, но и для растительной клетки. Дефензины способны изменять мембранный потенциал клетки патогена.

Синтез коротких пептидов усиливается под влиянием жасмоновой кислоты, концентрация которой в клетке резко возрастает при повреждении патогенном и при механических повреждениях растений (например, при поедании фитофагами).

В ответ на внедрение патогенов в растении возрастает уровень салициловой кислоты, которая в свою очередь также запускает синтез PR-белков. Впервые это было показано при инфицировании табака вирусом табачной мозаики в 1990 г. Устойчивость к вирусу можно было повысить, обрабатывая растения салициловой кислотой. Если у растений нарушен синтез салицилата, у него снижается иммунная реакция ко многим патогенам.

Салициловая кислота может связываться с некоторыми Fe-содержащими белками (например, с каталазой). При взаимодействии с салицилатом активность каталазы падает, концентрация перекиси водорода и других активных форм кислорода растет. Повышение концентрации активных форм кислорода стимулирует образование новых порций салициловой кислоты, что приводит к усилению эффекта накопления активных форм кислорода — перекисей, супероксидрадикала и т.д. Эти соединения окисляют различные компоненты клеток патогена, что ослабляет его и приводит к гибели. В крайнем выражении обработка салициловой кислотой может вызвать гибель клеток растения (запускается реакции сверхчувствительности).

  • реакция сверхчувствительности выражается в быстром отмирании растительных клеток в местах внедрения патогена. В результате этого возбудитель болезни оказывается в мертвой клетке и, лишившись питания, погибает. Внешне эта реакция выражается в образовании на листьях мелких некротических пятен (точечных некрозов), которые существенно не влияют на работу фотосинтетического аппарата. Реакция сверхчувствительности чаще наблюдается при внедрении в листья устойчивых растений возбудителей ржавчины и мучнистой росы.
  • синтез белков-лектинов, которые вызывают агглютинацию (слипание друг с другом) бактериальных клеток или грибных гифов;
  • фагоцитоз — внутриклеточное переваривание патогенных микроорганизмов.

Эти примеры показывают, что в ответ на инфицирование растений включается целый каскад защитных реакций организма. В большинстве случаев иммунитет растений к инфекционным болезням обусловливается не отдельными их особенностями или свойствами, а комплексом взаимосвязанных защитных механизмов, которые вступают в действие на определенных этапах патологического процесса.

Для формирования и функционирования индуцированных механизмов устойчивости к патогенам растению нужна энергия; поэтому этот процесс тесно связан с процессом дыхания.

Неблагоприятные внешние условия могут ослаблять растения и увеличивать риск заболевания. Поэтому важно проводить мероприятия, которые снижают влияние неблагоприятных внешних факторов и направлены на ослабление возбудителей болезней. Большая роль принадлежит минеральному питанию. Устойчивость растений к болезням повышают фосфор, калий, микроэлементы, а повышенные дозы азота, напротив, снижают устойчивость растений. На способности микроэлементов повышать устойчивость растений к грибным болезням основано использование их в составе фунгицидных препаратов, которые используются для химической борьбы с патогенными организмами. Большое значение принадлежит селекции — выведению сортов, устойчивых к болезням.

В общем виде, система мероприятий для борьбы с болезнями растений включает:

  • агротехнические методы (селекционносеменоводческие мероприятия, внедрение севооборотов, сочетание различных приемов обработки почвы, подготовку семенного и посадочного материала, соблюдение оптимальных сроков посева и уборки культур, проведение фитосанитарных мероприятий);
  • химические методы (использование химических препаратов, обладающих фунгицидным и бактерицидным действием);
  • физико-механические методы (уничтожение больных растений или их частей, применение мероприятий, основанных на изменении физических условий среды и губительно воздействующих на патогены);
  • биологические методы (использование микроорганизмов — антагонистов и бактериофагов; использование фитонцидов растений (например, препарат триходермин, используемый в овощеводстве, содержит культуру несовершенного гриба Trichoderma, который является антагонистом возбудителей корневых гнилей);
  • карантин растений (система государственных мероприятий, направленных на защиту растительных ресурсов страны от заноса и вторжения из других государств особо опасных вредителей и возбудителей болезней растений, а в случае проникновения карантинных объектов — на локализацию их очага).

Следует отметить, что для одних и тех же культур и даже одних и тех же болезней в различных природно-климатических зонах или в различные по погодным условиям годы системы мероприятий могут различаться в зависимости от конкретных условий.