Факультет

Студентам

Посетителям

Возникновение математики у греков

Первые попытки приложения математики к механике были сделаны еще Аристотелем и его ближайшими последователями. В «Проблемах механики» впервые встречаются чертежи и буквенные обозначения величин. Но математические познания древних греков были гораздо значительнее, чем примененные философами в механике.

Греческая математика возникла не на «пустом месте». Египтяне и вавилоняне значительно ранее древних греков обладали большими по тому времени математическими познаниями. Находясь в постоянных сношениях с этими народами, греки могли пользоваться уже имевшимися знаниями и развивать их дальше.

Одновременно возникла математика и у индийцев. После похода Александра Македонского в Индию на границе этой страны были основаны небольшие греческие государства. Через их посредство Греция поддерживала торговые отношения и обмен знаниями с народами Индии.

Еще в IV веке до н. э. строителям жертвенников в Индии были известны свойства катетов и гипотенузы прямоугольного треугольника. Индийцы сформулировали их в следующем выражении: «Диагональ прямоугольника производит то, что производят отдельно длинная и короткая стороны прямоугольника», то есть им была известна теорема Пифагора.

Позднее именно индийцы придумали знаки для обозначения чисел и нуля, которые были заимствованы у них арабами, а от них перешли как «арабские» в Европу. Индийцам принадлежит и честь изобретения «позиционной» системы написания чисел: в ней каждая цифра обозначает десятки, сотни и так далее, в зависимости от места.

В V—VI веках н. э. дроби изображались индийцами так же, как и теперь: вверху — числитель, внизу — знаменатель; только они не были разделены чертой.

Математики Индии уже противопоставляли положительным величинам отрицательные, над которыми для отличия ставилась точка. Они признавали отрицательные корни уравнений, считавшиеся недопустимыми даже в III—IV веках знаменитым греческим математиком Диофантом.

Положительным количествам, «имуществу», они противопоставляли отрицательные — «долг».

Задачи индийских математиков большей частью имели необычайную для нас форму. Вот, например, одна из них: «Из пчелиного роя 1/4 опустилась на один цветок, а 2/3 полетело на другой цветок. Одна пчела, равно привлекаемая сладостным благоуханием обоих цветков, жужжит в воздухе. Скажи мне, прелестная женщина, сколько было всего пчел?»

Решение этих задач требовало знания уравнений как первой степени, так и квадратных, которые уже были известны индийцам.

Греческие философы поняли практическое значение математики, как только познакомились с геометрией в Египте.

Философ Фалес (конец VII — начало VI века до н. э.) и его ученик Анаксимандр (около 610—546 до н. э.) уже применяли свои геометрические познания к решению астрономических задач.

Первые греческие математики обладали лишь элементарными познаниями. Фалесу были известны свойства равнобедренного треугольника, равенство вертикальных углов (то есть образованных пересечением двух линий и лежащих друг против друга), деление на две равные части круга его диаметром. Эти знания он заимствовал у египетских жрецов.

«Побывав в Египте, — гласит старинное греческое предание, — Фалес привез в Элладу геометрию. Многое он открыл сам, зачатки многого передал своим преемникам». Но, заимствовав математические познания у египтян и вавилонян, греки стремились развить их, привести в систему и лишить ореола таинственности.

Совсем иное направление дал математике один из учеников Фалеса, прославленный Пифагор (около 580—500 до н. э.).

Пифагор долгое время прожил в Египте и путешествовал по Вавилонии. Общаясь с жрецами этих стран, он заимствовал от них не только познания в геометрии и арифметике. Его заинтересовала также магия — «колдовское» искусство, тесно связанное с религиозными предрассудками. Он увлекался и астрологией — ложной наукой предсказания будущего по положению на небесной сфере светил.

Пифагор поддался влиянию мистицизма жрецов, наложившего отпечаток на его философское учение. Даже математика в его изложении имела мистический характер.

Числа, обозначающие лишь величину или количество, получили в глазах пифагорейцев какое-то особенное значение. В них видели «начало» всех вещей природы, которое было предметом поисков греческих философов. Им приписывалось «совершенство» и «несовершенство» и другие качества, свойственные телам природы. Число 6 считалось пифагорейцами воплощением оживления, 7 — здоровья, 8 — дружбы, и так далее.

Пифагорейская мистика чисел в течение ряда веков действовала на воображение ученых Европы.

Предание связало с именем Пифагора известную теорему о равенстве площади квадрата, построенного на гипотенузе, сумме площадей квадратов, построенных на катетах прямоугольного треугольника.

Письменного доказательства открытия этой теоремы Пифагором не осталось. Но вероятно, что он первый сформулировал в виде теоремы эмпирический вывод из практики кровельщиков, плотников, строителей и «натягивателей веревок» — землемеров.

Каждый кровельщик, конечно, знал, что квадраты, построенные на катетах прямоугольного треугольника, содержат вместе столько черепиц, сколько их укладывается в квадрате, построенном на гипотенузе. Оставалось выразить это знание в терминах геометрии, чтобы «открыть» теорему Пифагора.

Вот почему эта теорема в греческой геометрии носила название «моста ослов», то есть истины, известной всем, кроме невежд.

В механике Пифагору принадлежит открытие, что гармонические звуки издаются струнами, длины которых находятся в простом числовом отношении. Пифагорейцы установили, что одинаково натянутые струны равной толщины, если их длины относятся как 1:2, 2:4, 3:4, 4:5, дают консонирующие звуки.

Консонирующими звуками называются такие, сочетание которых дает согласное звучание (благозвучие).

Но пифагорейцы приписали гармоничность сочетаний этих звуков числам, выражающим отношение между длинами струн. Подобную же «гармонию» они стали искать и во всех других явлениях природы.

Математика древних греков получила наибольшее развитие в александрийский период.

Александрия — мировой коммерческий порт античного времени — была основана Александром Македонским у устья Нила в 30-х годах IV века до н. э.

После смерти Александра Македонского в 323 году до н. э. Египтом правил Птолемей, сын Лага (Птолемей I Сотер). Он привлекал в Александрию ученых, писателей, архитекторов, инженеров. В начале III века до н. э. была основана Александрийская академия. Для этого учреждения воздвигли великолепное здание с аудиториями, рабочими комнатами и жилыми помещениями для ученых. При академии несколько позднее была собрана богатейшая библиотека, в которой хранились подлинники сочинений философов, математиков, астрономов и других ученых. Владельцам этих подлинников оставлялись только копии.

В эпоху расцвета научной деятельности Александрийской академии в ее библиотеке находилось четыреста тысяч пергаментных свитков и папирусов. Кроме того, триста тысяч свитков хранилось в храме Юпитера.

Александрия стала не только центром промышленности, но и средоточием научной деятельности и художественного творчества.

Науки, возникшие из потребностей практики, получили в трудах греческих ученых теоретическое завершение.

Астрономия на Востоке не имела других целей, кроме установления календарных дат и предсказания затмений. В Греции она стала наукой о строении вселенной.

Геометрия, бывшая в Египте, Вавилонии и Индии искусством землемеров и строителей храмов, была поднята александрийскими учеными на уровень математической теории.

Из греческих математиков раннего александрийского периода наибольшую известность получил Евклид, живший в конце IV и начале III века до н. э. Он оставил свои знаменитые «Начала» — сочинение по геометрии, в котором были исследованы свойства треугольника, параллелограммов, многоугольников, дано понятие о цилиндре, конусе и шаре. Евклид был занят задачей построения квадрата, площадь которого была бы равна площади треугольника, параллелограмма, многоугольника. Он вычислял объемы геометрических тел.

Но вычисление площади круга, поверхности и объема цилиндра и шара было еще не решенной проблемой для Евклида.

В «Началах» Евклида геометрия впервые была приведена в стройную систему. Это сочинение служит образцом строгости доказательств и последовательности изложения.

В течение более двух тысячелетий «Начала» служили руководством при изучении геометрии. Все великие математики прошлого начинали знакомство с геометрией по этой книге.

Евклид не стремился приложить свои математические способности к физике или технике. Он, правда, разработал учение об отражении лучей света от плоских и кривых зеркал. Но это было для него чисто геометрической задачей.

По свидетельству историков, о приложении геометрии к механике Евклид и не думал. Когда один юноша спросил его, какую пользу получит он от изучения геометрии, Евклид, по преданию, сказал своему слуге: «Дай этому человеку три обола, он ищет от геометрии пользу».

Обол — древняя греческая монета. Во времена Гомера оболом называли железный прут, который служил в качестве монеты. Поэтому позднее мелкую монету также назвали оболом.

Однако скоро нашелся ученый, который посмотрел на задачи механики с точки зрения геометрии.

До того времени механика была искусством техников, усваивавших различные чисто практические правила. Приложение к ней математики превратило механику в строгую науку.

Подобно геометрии, в механике делаются выводы, исходя из известных по опыту данных — аксиом.

Источник: Ф.Д. Бублейников. О движении. Из истории механики. Гос. изд. детской литературы Минпросвещения РСФСР. Москва. 1956