Повышенная кислотность оказывает как прямое (непосредственное) негативное влияние на физиологические процессы в клетках и тканях растений, так и косвенное — вследствие ухудшения агрохимических, агрофизических свойств почвы и снижения ее биологической активности.
Подкисление характерно для многих почв и происходит постоянно, поскольку в процесс почвообразование связан со значительным потерями оснований в результате выщелачивания и отчуждения их растениями. Реакция почвы является отражением характера протекающих в ней химических и биологических внутрипочвенных процессов.
Повышенная кислотность дерново-подзолистых и серых лесных почв является основной причиной низкой продуктивности сельскохозяйственных угодий, высокого содержания в почве подвижного алюминия, железа и марганца, а также снижения активности почвенной микрофлоры. При этом, для многих культурных растений повышенное содержание алюминия оказывает большее негативное влияние, нежели концентрация ионов водорода, рН почвы.
Косвенное действие повышенной кислотности и подвижного алюминия проявляется в снижении доступности растениям азота, фосфора, молибдена и снижении активности почвенной микрофлоры. Подвижные формы алюминия, железа и марганца снижают доступность фосфора растениям, связывая растворимые соединения фосфора в нерастворимые АlРО4 и FeРО4.
Повышенная кислотность почвы вызывает изменение интенсивности и направленности биохимических процессов обмена веществ в растениях, вследствие чего нарушается синтез белков, углеводов и жиров, происходит накопление промежуточных продуктов обмена — аминокислот, моно — и дисахаридов и нитратов.
Известкование кислых почв — наиболее дешевый способ улучшения условий азотного, фосфорного и калийного питания растений, что особенно важно в связи с высокой стоимостью минеральных удобрений в России. При внесении извести одну и ту же прибавку урожая сельскохозяйственных культур можно получать при значительно меньших дозах удобрений.
Оптимальная реакция среды позволяет получать хорошие урожаи (40-45 ц/га) зерновых культур при среднем содержании доступных элементов питания в почве и средних дозах удобрений, в то время как на кислых почвах для получения таких урожаев содержание этих элементов должно быть в 1,5-2 раза выше.
При сельскохозяйственном использовании земель подкисление почвы происходит более интенсивно, нежели в естественных травостоях вследствие отчуждения кальция и магния с урожаем, вымывания их за пределы корнеобитаемого слоя почвы и внесения физиологически кислых минеральных удобрений. В результате длительного выщелачивания оснований кислые почвы широко распространены в районах с промывным водным режимом почв.
Наиболее значительное влияние на подкисление почвы оказывают вынос кальция и магния урожаем и их вымывание из пахотного слоя осадками. Вынос Ca и Мg сельскохозяйственными культурами варьирует в широком диапазоне и обусловливается, прежде всего, биологическими особенностями растений и величиной урожая. Например, с 1 т основной продукции с учетом побочной зерновые культуры выносят 10-14 кг CaO и МgО, зернобобовые 40-45 кг. В зависимости от урожайности зерновыми ежегодно отчуждается с поля примерно 20-50 кг/га кальция и магния, бобовыми — 100-200 кг/га и более. Поэтому, чем выше продуктивность посевов, тем больше отчуждается оснований, быстрее наступает подкисление почвы и чаще требуется проводить известкование.
Вынос кальция и магния с урожаем основных сельскохозяйственных культур (кг/т продукции в пересчете на оксиды)
Культура | СаО | MgO | Сумма СаО и MgO |
Пшеница, рожь, ячмень, овес * | 6-8 | 5-7 | 11-15 |
Гречиха* | 16-18 | 7-9 | 22-26 |
Горох, фасоль, нут, чина, соя* | 30-35 | 8-10 | 40-45 |
Лен-долгунец* | 15-17 | 14-16 | 30-33 |
Сахарная свекла(корни) | 2,2-2,5 | 1,1-1,3 | 3,6-4,2 |
Кормовые корнеплоды | 0,4-0,6 | 0,8-1,2 | 1,5 |
Картофель (клубни) | 0,4-0,6 | 1,3-1,6 | 2,0 |
Кормовой люпин (зеленая масса) | 2,6-3,0 | 1,5 | 4,1-4,4 |
Клевер красный (сено) | 40-43 | 16-18 | 60 |
Люцерна (сено) | 44-48 | 7-10 | 52-58 |
Многолетние и однолетние травы (сено) | 27-30 | 10-12 | 38-42 |
Капуста белокочанная | 1,3-1,5 | 0,8 | 2-2,5 |
*Зерно + солома |
Большее количество кальция и магния теряется из почвы в результате выщелачивания осадками. Вымывание этих элементов из почвы зависит от ее гранулометрического состава, количества и характера выпадения осадков, состояния растительного покрова и доз минеральных удобрений. Результаты лизиметрических опытов ВИУА, ВНИИ кормов, Раменской агрохимической станции НИУИФ показали, что потери Са2+ и Мg2+ из почвы от вымывания в значительной мере зависят от атмосферных осадков и доз минеральных удобрений. Наименьшие их потери были в условиях засушливого лета без внесения удобрений. Вымывание кальция и магния значительно возрастают с увеличением доз аммонийных азотных и калийных удобрений. При внесении этих удобрений, например NH4Cl или (NH4)2SO4, растения для питания используют преимущественно аммонийный азот (NH4+) в обмен на ион водорода (Н+), который с оставшимися в растворе анионами хлора Cl— или SO4— образует соответствующие кислоты. Эти удобрения являются физиологически кислыми. Таким образом, в случае когда растения преимущественно потребляют из удобрений катионы по сравнению с анионами они будут физиологически кислыми (NH4Cl, (NH4)2SO4, KCl, K2SO4), и, напротив, если растения более интенсивно используют анионы, происходит подщелачивание раствора и такие удобрения являются физиологически щелочными.
Потери кальция и магния из почвы (Шильников, 2001)
Дозы удобрений | СаО | MgO | СаО | MgO |
кг/га | кг на 1 кг NPK | |||
Суглинистая почва | ||||
Без удобрений | 99 | 12 | — | — |
N170P170K170 | 252 | 31 | 0,5 | 0,06 |
N340P340K340 | 484 | 67 | 0,5 | 0,07 |
Супесчаная почва | ||||
Без удобрений | 205 | 41 | — | — |
N170P170K170 | 467 | 98 | 0,9 | 0,13 |
N340P340K340 | 1012 | 142 | 1,0 | 0,14 |
По данным лизиметрических опытов (И. А. Шильников и др., 2001) в условиях Московской области потери кальция и магния из почвы возрастали с увеличением доз минеральных удобрений и количества осадков. Вымывание кальция из суглинистой дерново-подзолистой почвы составило в среднем за 15 лет в вариантах без удобрений 35 кг/га, при внесении возрастающих доз минеральных удобрений – 80-140 кг/га. Потери из супесчаной почвы были в 1,5-2 раза выше, чем их суглинистой. Среднее содержание Са2+ в лизиметрических водах суглинистых почв было примерно в 5 раз выше, чем Mg2+, а супесчаных почвах — в 6-7 раз.
В последние годы большое внимание уделяется кислотным атмосферным осадкам, выпадение которых связано с выбросами диоксида серы и оксидов азота автотранспортом и промышленностью. Однако, как показали исследования выпадение «кислых» атмосферных осадков, не играет существенной роли в подкислении почв, как предполагалось, поскольку параллельно увеличился также выброс в атмосферу оснований.
Важно отметить, что потери кальция и магния в лизиметрических опытах не следует полностью отождествлять с реальными полевыми условиями, поскольку в лизиметрах можно учесть только нисходящую миграцию элементов питания. В полевых условиях, в результате потребления растениями воды на транспирацию существенное значение имеет восходящая миграция элементов питания, в том числе кальция и магния.
Если учесть, что в супесчаных почвах валовое содержание Са составляет 0,10,3%, то при ежегодном вымывании кальция 200 кг/га за 30-50 лет его потери превышали бы содержание в почве. Отсюда следует, что результаты краткосрочных лизиметрических опытов отражают общие закономерности водной миграции элементов питания, но не могут дать объективной количественной оценки потерям кальция из почвы.
Изучение баланса элементов питания в полевых опытах показало довольно значительные потери кальция и магния, однако в целом они в 1,5-2 раза ниже, чем в лизиметрических опытах и происходят в основном в ранневесенний и осенний периоды на почвах не покрытых растениями. Под растениями, в период интенсивного потребления ими воды и элементов питания, потери кальция минимальны или отсутствуют.