Факультет

Студентам

Посетителям

Химия океана

Мировой океан — совокупность океанов и отдельных морей Земли — занимает около 71% всей земной поверхности.

Ему принадлежит 98% всей гидросферы, что составляет 1338 млн. км3. Мировой океан един. Его изучением занимается комплексная наука — океанология, разделом которой является химия океана. Химия океана — наука о свойствах, строении и взаимодействиях веществ, находящихся в водной толще, донных осадках и приводном слое атмосферы. Рассматривая взаимодействие океана с пограничными областями, химию океана в широком смысле нужно отнести к науке геохимии (химии Земли).

Основными направлениями в исследованиях по химии океана являются изучение физико-химической природы морской воды, химических основ первичной биологической продуктивности, химического обмена на границах раздела атмосфера — океан, океан — дно, морских донных отложений, круговорота отдельных элементов и органического вещества.

Практическое значение науки химии океана определяется тем, что степень освоения и использования ресурсов суши настолько велика, что существует опасность быстрого истощения их. Знания по химии океана необходимы для рационального использования Мирового океана и охраны его от загрязнений.

Происхождение и эволюция состава воды океана. По современным взглядам, Земля образовалась из холодного космического вещества около 4,6 млрд. лет тому назад. При гравитационном сжатии и за счет распада радиоактивных изотопов произошло разогревание ее недр.

Однако расчеты ученых показывают, что Земля не была полностью расплавлена. Отвод тепла мог проходить по механизму, который заключается в следующем. В зоне расплава более тугоплавкие вещества первыми выпадают на дно зоны, а более легкоплавкие всплывают вверх и оказываются перегретыми и плавят свод. Зона расплава поднимается, таким образом, к литосфере.

Выделение воды из твердого вещества метеоритов-хондритов, состав которых считается наиболее близким к мантии Земли, было экспериментально доказано А. П. Виноградовым при помощи так называемого зонного плавления. При нагревании метеоритов происходило выплавление легкоплавких силикатов, насыщенных летучими веществами. Следовательно, на поверхность Земли поступал расплав, после охлаждения которого образовалась земная кора, гидросфера (первичный океан) и атмосфера. Подтвержденном этой теории является тождество состава газов действующих вулканов с первичной атмосферой.

Может возникнуть вопрос: хватило ли массы мантии, которая содержит всего 0,5% воды, для образования Мирового океана? Расчет показывает, что масса воды, заключенной в мантии, в 10 раз превышает массу Мирового океана.

Температура у поверхности Земли при тонкой первичной атмосфере, по расчетам, оценена + 15° С, поэтому на Земле постоянно существовала гидросфера, которая наложила определенный отпечаток на эволюцию земной коры и атмосферы.

Ежегодно с поверхности Мирового океана испаряется слой воды, превышающий по объему семь Черных морей. Казалось бы, что соответственно должен понижаться и уровень океана. Однако вся испарившаяся вода компенсируется десятками тысяч больших и малых рек, осадками.

Пополняет запасы морей и вода, просачивающаяся с суши через береговые и донные породы,— подземный сток.

До сих пор не удавалось точно определить величину подземного стока. Сотрудники Института водных проблем Академии наук СССР проделали большую работу но обобщению мирового опыта оценки подземного стока.

По географическим, геологическим, при родным и другим признакам вся прибрежная часть суши, включая материки и крупные острова, была разбита почти на 500 участков. С помощью математического моделирования на основе данных многолетних геологических наблюдений была вычислена величина стока с каждого из континентов.

Различают три стадии формирования солевой массы океана. На первой стадии воды первичного океана имели кислую реакцию, так как хлор, бром и фтор выделялись в виде сильных кислот: HCl, HBr и HF. Кислоты реагировали с ультраосновными и основными горными породами и в воду переходили щелочные, щелочно-земельные, а также и другие элементы. Таким образом, все анионы морской воды — продукты дегазации мантии, а катионы — продукты разрушения пород земной коры.

Общая соленость океанских вод была, вероятно, близка к современной, но отношения главных компонентов претерпели существенные изменения. Главными анионами были карбонат и бикарбонат, а не хлорид. В водах первичного океана отсутствовал сульфат-ион, что служит доказательством отсутствия в океане и атмосфере кислорода.

Вторая стадия формирования химического состава океана связана с возникновением жизни на Земле. Первые древние достоверные остатки жизнедеятельности организмов найдены в сланцах, возраст которых 3,1—3,4 млрд. лет.

Выделение свободного кислорода в процессе фотосинтеза привело к изменению состава атмосферы и океана. Атмосфера стала азотно-кислородной. Соединения углерода были окислены до углекислого газа, который почти полностью был извлечен в процессе фотосинтеза. Сера и сероводород окислились, и в океане начал накапливаться сульфат-ион. Главными формами азота в морской воде стали молекулярный азот и нитрат, а не аммиак. Железо из двухвалентного перешло в трехвалентное состояние и потеряло геохимическую подвижность. Увеличилась подвижность кальция и магния.

После установления стабильного состава атмосферы наступила последняя стадия формирования солевого состава Мирового океана. Современный состав океанских вод установился 1,5—0,5 млрд. лет тому назад.

Состав морской воды. Мировой океан покрывает 71% поверхности нашей планеты, что имеет решающее значение для жизни всего земного шара благодаря исключительным свойствам воды вообще и вод океана в частности.

Вода не встречается в природе в виде чистого вещества. В строгом научном смысле мы всегда имеем дело со сложным раствором веществ в воде. Вода самое удивительное и загадочное вещество. Многие физико-химические свойства воды являются аномальными: температура кипения ее, если исходить из свойств и положения кислорода и водорода в периодической системе Д. И. Менделеева, оказывается, на 180° С выше, температура замерзания должна быть минус 100° ниже нуля. Величины поверхностного натяжения, теплопроводности и диэлектрической проницаемости у воды наиболее высокие. Наибольшая плотность воды при +4° С. Твердая фаза (лед) легче жидкой тоже аномалия. Некоторые исключительные свойства воды ученые еще не могут объяснить, например, вода после воздействия магнитного поля не образует накипь.

Морская вода — это 3,5%-ный раствор солей, с незначительным количеством растворенных газов и органических соединений. Что представляют минеральные вещества, растворенные в океанской воде, так называемая «морская соль»? Теоретически в морской воде в растворенном или взвешенном состоянии должны находиться все химические элементы.

Химический состав морской воды, по О. А. Алекину, подразделяется на пять групп:

1. Основные, или главные, ионы. Эти одиннадцать элементов составляют 99,98% по весу от всех растворенных в океанской воде солей.

Основные ионы морской воды

Иов

Концентрация, г/кг

Ион

Концентрация, г/кг

Хлорид

19,3534

Натрий

10,7638

Сульфат

2,7007

Магний

1,2970

Бикарбонат

0,1427

Кальций

0,4080

Бромид

0,0659

Калий

0,3875

Фторид

0,0013

Стронций

0,0083

Борат

0,0265

Все остальные элементы находятся в морской воде в очень небольших количествах (их общее содержание не превышает 0,02%).

2. Биогенные элементы (C, H, N, P, Si, Fe, Mn), из которых состоят организмы.

3. Растворенные в морской воде газы: кислород, азот, двуокись углерода, аргон, сероводород, углеводороды и инертные газы.

4. Группа элементов с концентрацией меньше, чем 1·106 (микроэлементы).

5. Органические вещества.

Подавляющую часть морской соли составляют хлориды, а не карбонаты. В этом состоит главное отличие морской воды от речной, в которой преобладают углекислые соли. В океане углекислые соли не могут накапливаться выше определенного предела и осаждаются в виде карбоната кальция.

Постоянство состава морской воды. В конце XIX в. шотландским химиком У. Диттмаром было установлено, что относительное содержание основных солей постоянно для всего океана. Постоянство солевого состава морской воды — главнейшая закономерность в химии океана. Концентрация растворенных солей, или соленость, может меняться значительно, например, от 10 г/кг в Балтийском море до 130 г/кг в лагунах Мексиканского залива.

За величину солености был принят вес сухого остатка, содержащегося в 1 кг морской воды, когда карбонаты превращены в окислы, бромиды и иодиды замещены эквивалентным количеством хлора и органические вещества сожжены при 480° С. Соленость обозначается символом S. Единица измерения г/кг или ‰ (промилле). Однако на практике этим методом ввиду его сложности не пользуются, а соленость вычисляется по хлорпости, электропроводности или показателю преломления.

В настоящее время рекомендовано такое соотношение между соленостью и хлорностью: S‰= 1,80655‰ Cl. Соленость — важная химическая и физическая характеристика морской воды. Определяя только соленость, можно вычислить концентрацию любого основного иона морской воды. От солености и температуры зависит растворимость газов. По солености и температуре рассчитывается плотность, распределение которой определяет движение водных масс.

Распределение солености в поверхностном слое океана (исключая моря) носит зональный характер. Наименьшие значения солености отмечаются в полярных районах, что обусловлено таянием льдов, а для Северного Ледовитого океана — еще и материковым стоком, и в узкой экваториальной зоне, что объясняется положительным пресным балансом (атмосферные осадки преобладают над испарением). Наибольшая соленость отмечается в субтропических зонах около 20° северной и южной широты.

Неоднородность поля солености Мирового океана является результатом физических процессов, связанных с родным балансом. Наибольшее значение имеют испарение и выпадение осадков. Ежегодно с океанской поверхности испаряется 447 000 км3 и выпадает 411 000 км3 атмосферных осадков. Речной сток является важным фактором в прибрежных районах.

Зональное распределение солености нарушается течениями. Система Гольфстрима выносит воду с соленостью до 35‰ в Норвежское море и в Арктику. Восточно-Гренландское и Лабрадорское течения значительно понижают соленость, перенося распресненную таянием льдов и осадками воду.

Из локальных особенностей поля солености океана следует отметить хорошо выраженное у берегов распресняющее влияние крупных рек, как Амазонка и Конго. Величайшая по своему стоку река Амазонка (10% мирового речного стока приходится на ее долю) имеет солевой состав около 40 мг/л, что почти в 1000 раз меньше средней солености морской воды.

Распределение солености в морях отличается значительными колебаниями вследствие влияния стока рек и климатических условий. Так, например, в Каспийском море соленость в средней части около 13%о, а в заливе Кара-Богаз-Гол соленость достигает 300‰.

Изменение солености по вертикали океана значительно сложнее, чем на поверхности, и связано с распределением водных слоев в зависимости от плотности.

Биогенные элементы. Особый интерес представляет Мировой океан как среда жизни. Именно здесь, по мнению многих ученых, зародилась жизнь, которая в длительном процессе эволюции дала колоссальное многообразие форм. Свыше 300 000 видов живых организмов обитает в океане: от микроскопических водорослей до самых крупных на планете животных — 160-тонных синих китов.

Разнообразие форм жизни на Земле поразительно, хотя оно основано на одном типе химического процесса — фотосинтезе, в результате которого в растениях из неорганических веществ создается органическое.

Большая часть растительного мира океана — это микроскопические фитопланктонные организмы (прикрепленные ко дну водные растения занимают очень небольшую часть), которые в основном и являются первичной продукцией моря. Объем ежегодной продукции фитопланктона в Мировом океане оценен величиной 500 млрд. т. На основе первичной продукции развиваются все другие морские организмы — бактерии, зоопланктон, рыбы, морские звери. Практическое значение для человечества представляет продукция, которую дают свободноплавающие животные (рыбы, головоногие моллюски, млекопитающие). Она оценивается всего 200 млн. т, включая несъедобные виды, резервы воспроизводства.

Для развития фитопланктона, кроме энергии солнечного света, необходимы неорганические компоненты. В состав организмов входит до 60 химических элементов; однако 90—95% массы организмов состоит из шести элементов: углерода, кислорода, водорода, азота, фосфора и кремния.

Соединения углерода, азота, фосфора, кремния, которые необходимы для жизнедеятельности организмов, получили название биогенных веществ.

Потребление биогенных элементов в верхних производящих слоях океана фитопланктоном и удаление их из этих слоев с остатками организмов, падающих вниз, приводит к обеднению слоев. Что касается соединений углерода, то запасы этого элемента в виде СО2 в море, атмосфере и донных отложениях столь велики, что изменения его концентрации из-за развития растений представляются несущественными. Но азота, фосфора и кремния при интенсивном развитии фитопланктона может оказаться недостаточно.

Изучение химии углерода, азота, фосфора и кремния имеет большое значение не только для химии моря, но и для биологии. Углерод находится в океане в виде неорганических (двуокись углерода СО2, угольная кислота, гидрокарбонат HCO3 и карбонат СО32) и органических соединений.

В круговороте углерода важную роль играет двуокись углерода. Это соединение углерода обладает особыми физическими и химическими свойствами и встречается в природе в разнообразной форме и больших количествах.

Гидросфера со своими биохимическими и геохимическими процессами оказывает огромное влияние на динамику CO2, на содержание двуокиси углерода в атмосфере. Изменение концентрации CO2 в атмосфере влияет на тепловой баланс земной поверхности, на химические свойства воды, на геологические явления и на климат.

Карбонатная система регулирует pH морской воды, который влияет на процессы растворения и осаждения химических соединений и создает благоприятные условия для существования организмов в океане.

В поверхностных слоях океана в процессе фотосинтеза растений происходит поглощение CO2. Эта потеря компенсируется растворением двуокиси углерода из атмосферы.

На больших глубинах, где фотосинтез из-за недостатка света прекращается, идет образование CO2 за счет разложения органического вещества в результате распада. В верхнем 500-метровом слое окисляется в среднем до 87% первичной продукции. В донные осадки попадает 0,1% органического вещества, из которого только 0,0001 часть идет на формирование нефти.

Повышение концентрации CO2 с глубиной вызывает увеличение растворимости карбоната кальция, поэтому известковые скелеты организмов, оседающие на дно, частично или полностью растворяются.

Запасы двуокиси углерода в океане поддерживаются поступлением из атмосферы, дыханием водных организмов, разложением органических остатков, растворением известковых пород дна и берегов, поступлением при подводных вулканических извержениях и с материковым стоком.

Уменьшение двуокиси углерода вызывается переходом в атмосферу, потреблением фитопланктоном при фотосинтезе, осаждением в виде карбоната кальция на дно океана.

Согласно О. А. Алекину, в океане ежегодно оседает все вносимое реками количество гидрокарбонатов (1,7 млрд. т), кальция (0,494 млрд. т) и частично магния (0,36 млрд. т).

Азот. Химия азота в море наряду с химией углерода является наиболее сложной. Основные формы азота в океане следующие: аммиачный, нитритный, нитратный, органический и свободный азот. Обмен азота между его соединениями и живыми организмами определяет его содержание.

Неорганические формы азота усваиваются в процессе фотосинтеза фитопланктоном, который, в свою очередь, служит основой питания зоопланктона. Регенерация азота происходит при разложении органического вещества.

Аммиачный азот появляется на первой стадии распада органического вещества в верхней продуктивной зоне. Больших концентраций иона аммония не наблюдается вследствие дальнейшего окисления до нитритов или потребления фитопланктоном.

Нитритные ионы, так же как и аммиак, содержатся в морской воде в малых концентрациях и под воздействием бактерий в присутствии кислорода окисляются в нитратные ионы. В отсутствие кислорода (в зоне минимума кислорода) происходит восстановление нитратов органическим веществом до нитритов.

Нитратный азот является основной формой азота в море (65% связанного азота заключено в этой форме) и представляет главный источник азотного питания организмов и конечный продукт минерализации органического вещества. Ниже зоны фотосинтеза концентрация нитратов быстро увеличивается, достигая максимума на 400—1000 м.

Азот в виде различных соединений попадает в океан с материковым стоком и атмосферными осадками. Ориентировочное содержание «связанного» азота (органический, нитратный и аммиачный), по нашим подсчетам, может быть принято в речном стоке равным около 0,6, а в атмосферных осадках — 0,3 мг/л. Рассматривая Мировой океан в первом приближении как среду, находящуюся в динамическом химическом равновесии, очевидно, что азот атмосферных осадков + азот материкового стока компенсируют процесс денитрификации (процесс перевода соединений азота в свободный азот) в океане. Количество азота, которое попадает в донные осадки, мало. Процессом азотофиксации, поскольку процесс эндотермичен и имеет ограниченное развитие, можно пренебречь при подведении баланса азота. В таком случае денитрификация приводит к ежегодной потере около 0,3 г азота под 1 м2 поверхности Мирового океана.

Фосфор также относится к основным биогенным элементам. Большая часть фосфора (около 90%) находится в виде растворимых неорганических соединений, органический фосфор составляет 5—7% и фосфор взвешенного вещества — 3—5%. Основным источником фосфора в океане является материковый сток. Речные воды содержат фосфор в неорганической и органической формах и в виде взвеси неорганического происхождения. Другим источником поступления фосфора является эоловый вынос терригенного материала, вулканическая деятельность и обмен с дном.

Неорганический фосфор, как и формы неорганического азота, усваивается растениями и переходит в органические соединения. Органический фосфор под воздействием бактерий или ферментов снова переходит в неорганическую форму. Схема круговорота фосфора подобна циклу азота, но имеет два отличия: по сравнению с азотом фосфор быстрее освобождается из органического вещества, у фосфора имеет место обмен с донными отложениями.

Распределение неорганического фосфора в океане определяется процессами потребления его фитопланктоном и регенерацией, а также динамическими причинами. В поверхностных водах концентрация фосфора меньше, чем в глубинных. С глубиной концентрация фосфора увеличивается, достигая максимальных значений в пределах 500—1200 м. Сезонные изменения фосфатов в поверхностном слое аналогичны изменениям нитратов. Весной и летом в высоких и умеренных широтах бурное развитие фитопланктона может привести к полному исчезновению питательных солей в зоне фотосинтеза. Большую часть года отсутствуют биогенные элементы в поверхностных слоях экваториальной и тропической зон. Только в районах подъема глубинных вод наблюдаются высокие концентрации соединений азота и фосфора.

Кремний входит в состав скелетов различных морских организмов. Хотя кремний является одним из распространенных элементов земной коры, концентрация его в морской воде невелика. Основная форма кремния в океане — растворенная неорганическая (95%), взвешенная неорганическая форма составляет около 1%, остальная часть приходится на органическую.

Распределение кремния в океане сходно в общих чертах с распределением азота и фосфора. Наименьшее количество кремния отмечается в поверхностных слоях, где он используется фитопланктоном, хотя его концентрация (в отличие от азота и фосфора) никогда не достигает нуля. С глубиной его концентрация растет вследствие растворения скелетных частей, достигая максимума у дна. Максимум содержания кремния расположен глубже максимума фосфора и азота, так как регенерация фосфора и азота из мягких тканей организмов идет быстрее, чем растворение скелетов и панцирей, часть которых достигает дна. Диатомовые илы занимают до 10% площади дна океана. Эта потеря кремния из общего цикла компенсируется речным стоком и эоловым (ветровым переносом).

Растворенные газы. Газы попадают в океан в результате обмена с атмосферой, при вулканической подводной деятельности и в результате протекающих в морской воде химических и биологических процессов.

Соотношение кислорода и азота в морской воде приблизительно 1:2, в то время как в атмосфере оно равно 1:4, т. е. относительное содержание кислорода в морской воде повышено.

Кислород в морской воде является подвижным и активным элементом. Наличие кислорода в воде обязательно для существования большинства организмов.

Концентрация кислорода в океане колеблется в пределах до 10 мл/л. Основными источниками кислорода в морской воде являются: обмен с атмосферой и выделение его в результате процесса фотосинтеза. Поглощение кислорода из атмосферы может происходить только при концентрации ниже равновесной, которая зависит от температуры и солености.

К процессам, уменьшающим концентрацию кислорода в океане, относят выделение кислорода в атмосферу и расход на химические, биохимические и биологические процессы.

По величине концентрации кислорода водную толщу океана можно разделить на четыре зоны: поверхностная, промежуточная, глубинная и придонная.

Поверхностная зона, в свою очередь, может быть подразделена на верхний слой, слой наибольшего фотосинтеза и нижний слой. Верхний слой (0—10 м) вследствие обмена с атмосферой почти всегда насыщен кислородом (100% насыщения при данной температуре и солености). Слой наибольшего фотосинтеза характеризуется пересыщением кислорода (до 120—130%). Нижняя граница этого слоя определяется глубиной, на которой количество продуцируемого кислорода фитопланктоном равно количеству расходуемого кислорода. Нижний слой находится от точки компенсации до промежуточной зоны и характерен падением концентрации кислорода.

Промежуточная зона (слой кислородного минимума) меняет свое положение в разных частях океана от 100—300 до 1400—1600 м. В этой зоне происходит резкое падение температуры и содержания кислорода до 0,5 мл/л.

Глубинная зона занимает основную часть океана и характеризуется довольно высоким содержанием кислорода — до 5 мл/л. Если бы воды океана не перемешивались, то следовало бы ожидать дальнейшего уменьшения концентрации кислорода. В глубинной зоне океана происходит перемещение водных масс арктического и антарктического происхождения, которые при низкой температуре были насыщены кислородом, что и вызывает обогащение зоны. Даже в глубоководных впадинах (более 8 км) Тонга, Кермадек и Марианской содержание кислорода довольно высокое — около 4 мл/л.

Придонная зона занимает незначительную часть океана и характеризуется низким содержанием кислорода.

Сезонное изменение кислорода наблюдается только в поверхностной зоне в средних и высоких широтах. Зимой концентрация кислорода возрастает вследствие увеличения растворимости газов при понижении температуры, несмотря на уменьшение фотосинтеза. Летом наблюдается понижение содержания кислорода, но иногда отмечаются вспышки цветения водорослей, которые создают перенасыщение кислорода в поверхностной зоне.

Среди газов, растворенных в морской воде, наибольшую концентрацию имеет азот. Однако ввиду химической инертности азот почти не участвует в процессах, протекающих в океане.

Содержание растворенного азота в морской воде изменяется мало. В поверхностных слоях его относительное содержание всегда 100%, хотя в океане обнаружены азотфиксирующие бактерии и бактерии, переводящие соединения азота в свободный азот.

Сероводород. Сероводород появляется в морской воде только в случае отсутствия кислорода. Образование сероводорода при биохимическом восстановлении сульфатов протекает при участии анаэробных бактерий. Другой источник поступления сероводорода — разложение органического вещества.

Временное образование сероводорода отмечалось в Индийском и Атлантическом океанах, в глубоких фиордах Норвегии. Постоянно сероводород содержится в Черном море на глубинах более 150—200 м вследствие отсутствия обмена глубинных вод через мелководный пролив Босфор и слабой вертикальной циркуляции вод в самом Черном море. Концентрация сероводорода в нем достигает 7 мл/л.

Авторы: И. И. Волков, кандидат химических наук, В. А. Коннов, кандидат химических наук